How and Why to Encapsulate Class Treés

Dirk Riehle?

riehle@informatik.uni-hamburg.de
Software Engineering Group, University of Hamburg
Vogt-KolIn-Str. 30, 22527 Hamburg, Germany

Abstract

A goodreusable framework, pattern woduleinterface usually is represented diystract
classes. They form aabstractdesign and leave the implementation to congebelasses.
The abstractdesign is instantiated by naming thesdclasses. Unfortunately, ti@gposes
implementation detaillike classnames andlass tree structures. The papefes aration-
ale and a general metaobject protocol desligh encapsulateshole class trees. Clients of
an abstractlesign retrieveclasses and create objects based on class sengpitifca-
tions. Usingabstractlasses as thanly interface enhances information hideuigd makes it
easier both to evolve a system and to configure system variants.

1 Introduction tions whose sol@urpose is to create an object of a
' ~ related classpecialized to fit the curremlass. The
A good frameworlconsists of a set of collaborating fjrst applicationobject uses factornethods to create

classes that clarifyhe overall designclassdepend- the whole layer of user provided application objects.
encies and distribution of responsibilitid®tween

them. These classese usuallyabstractclasses that
leave implementation details subclassesDifferent
subclassesmplement differentvariants ofthe ab-
stractdesign. Users of a framework supplywith
subclasses tembedtheir application specific func-
tionality into the framework.

Factorymethodsaren’t essential becauieey are
purely administrative. Their impact &/en negative,
because they open gfass trees by ekpitly naming
concretesubclasses. Often aew factory method
requires anew subclass to bevritten! However, the
framework uses objects returned from factory meth-
ods under theiabstract superclassiaterface only.
To actuallystart up asystem, objects of the user Thys, itshould be the frameworthat retrieves user

supplied subclassémve to be created amllushave provided classes and creates objects of them.
to be namedMost current applicatiorirameworks

rely on so called factorynethods: Thesare opera- This can beachieved by encapsulatingass trees

as presented in thipaper. Class trees atedden

Copyright 0 1995 bythe Association for Computing Machinery, Inc. behind their abstract superclassershich serve as
Permission to make digital or hacdpies ofpart or all ofthis work for

personal or classroom use is granted witteatproviled thatcopies are their interface. Clients uselass specificationgo

not made or distributed for profit or commercial advantagetbatdnew H i i
copies bear this notice and the full citation on the first page. Copyrights fol;emeve classesc(ass retrleva)| and create ObjeC'[S

components of this workwned by othershan ACM must be honored. (late and pattern creatioh from the encapsulated

Abstracting with credit is permitted. To copy otherwise, to republish, oclass tree. The specificatimnechanism isapable of
post on servers or to redistribute to lists, requires prior specific permission :

and/or afee. Request Permissions fréfublications Dept, ACM Inc., Fax dealing with hidden dependencies betwegbclasses.
+1 (212) 869-0481, or <permissions@acm.org>.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conf. Proceedingsl4 pages.
2 Now at: UBILAB, Union Bank of Switzerland. CH-8021 Ziirich, Switzerland. riehle@ubilab.ubs.ch

Thus, it can beised to create several related object® Related Work on Class Hiding

using their abstract superclasses only.

In an OOPSLA '94 paper [LS94], Lortz arghin
present a rationale for cladsding: An abstract
service class provides the interfacéor clients but
leaves open implementation details. Thrag filled

Classspecifications are buiftom clauseswhich
represent class properties &ghtweight objects.
These specificationsre object-oriented rightfrom
the begmnmgandneeo_l naadditional language or tool ¢ by concrete subclasses each with sligtilfier-
support. The strategies tookup classeare so fast ing semantics. Examples ofass semanticare per-
(in the order of factorymethods)that the concepts formance characteristics, persistence (yesta&jng
can be incorporated into basic framework design. advantage of speciaknowledge, implementation

The benefits of encapsulatietpss trees, be it for strategies etc.
single trees or fulfledged abstractdesigns of col-
laborating and dependent classes, are manifold:

Clients of theabstractservice don't know the
subclasses by name.dlient thatwishes to create an
« If provided with theproper data for classpecifi- object of theabstractservice classspecifies a con-

cations, lesgode needs to beritten. For exam- tract for it. A contracexpresses the required proper-

ple, theuser isfreed from specializing factory ties as strings consisting &eywords and other ex-

methods. pressions, forexample “persistentrange-checked;
sparse; size=1000.” Arobject returned from the
creation process is guaranteed to satibigse re-
guirements.

* Users can focus on the relevatistraction and
the specification ofneededfunctionality. They
don't have to deal with the implementation of an
abstract design by naming specific subclasses. The client calls a special operation of tigstract

serviceclass in order to create abject and provides

it with the contract. The abstract service clasisls a

list of exemplars each dhem representing a sub-

class. Anexemplar is a regular instance of its class

that serves as a substitute for it in languages that
don’t makeclasses first class objects, fekample

» Classes can bglugged into the tree anédmoved C++ or Eiffel. The abstractserviceclass ask®ach
with only local consequences. This eases evolutiogxemplar whether fits thegiven contract. If so, it is
and configuration of system variants. clonedand returnedThus,the subclasseare hidden

from the client though eventually objects of them are

created.

» It is easier to change an encapsulatiss tree,
because its classames ancdlass tree structure
arehidden. Clientgshatwork with abstractlasses
only are not affected by changes to the tree’s
structure.

Encapsulating class treesakes it easier to use ap-
plication frameworks, t@adaptdifferent functionality
for system variants and to evolve class trees. Lortz and Shin’s work can be interpreted to con-

The next chapter contrasts this papéth a pre- tribute to three diﬁereMre_as of clasbiding. Their
vious OOPSLApaper. Chapter Bitroduces an ex- approach supporthe architecturabbstraction of a

ample framework and discusses the three main cohP€ With severahidden implementations, provides a
ceptsneeded toencapsulate class trees. Chapter £UINg based specificatiomechanism and presents
discusseshow to represent class properties and€Xe€mplar based programming asesignthat makes
specifications in an object-oriented waghapter 5 Class hiding possible.

then gives concise definitions of the three main con- This papergoes somesignificant steps further in
cepts from chapter 3. Chapter 6 discuskesmpact all three agas. Itshowsthat not only implementa-
of applying the techniques on both a technical andons of isolatedabstractservice classes can be hid-
conceptual level. Chapter 7 presents related work antén from the clientbut implementations ofiny ab-
chapter 8 rounds up tigaperwith conclusions and stract desigrconsisting of collaborating ardepend-
an outlook on future work. ent classes.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

It further showshow astandardmetalevelarchi- figure shows a bold linghat separates application
tectures can bextended tsupportthe neededspeci- specific subclasses from the framework classes.
fication mechanism. The specification mechanism ig\pplication specific classeare, for example, rec-
object-oriented andhus directly supported by the tangle and triangle classes st®own in figure 1 and
underlying languageClasslookup for given specifi- resizer classeshich are wrapped around a graphical
cations can be performed by simple table lookups. object both visually and logically in order to resize it.

Figure 3 shows four ofhe application specific

: subclasses of the editor in figure 1. Ithese classes
3 Overview of Concepts that make the abstract design of figure 2 concrete and
Figure 1 shows a graphical editiiat serves as an let the editor creatactual graphical objects. How-
example throughout theaper. Theeditor is used to ever, from the editor's point ofiew it is irrelevant
draw and arrange graphical objects. Thegcreated Wwhether it is dealing with rectangles and triangles or
from the toolbox on the left side of the window. symbolsfor resistors and capacitors.aily relies on

the abstract classes of figure 2.

The graphical notation of this paper is based on
ad OMT [RBP+91,Rum95]. Classes are drawn as rec-
tangles and use-relationshipse drawn as arrows.
GraphResizer is a subclass déraphObject

This isshown by the triangle symbol on the link con-
necting boticlasses. Objects adepicted as rounded
rectamles.

The next subsections shaww the editoclass of
the framework works with the user-provided applica-
tion classes without statically referencing them.

i]] 3 el 1 E

Hiom stz

The editor will retrieve thelassesRectangle
and Triangle from the GraphObject class
tree to build the toolbox (class retrieval, 3.1).

Figure 1: The graphical editor shows a toolbox
of graphical objects classes on the left and
some instances of them on the canvas.

* The editor will create objects of thenidden

graphical object classes using simple class

specification (late creation, 3.2).

The editor is built from the framewoshown in fig-
ure 2. Thehree classearesufficient to reveal all the
relevant details of the concepts to be discussed. The

GraphEditor GraphObject GraphObject

GraphResizer

GraphResizer

VAN

RectangleResizer >| Rectangle
TriangleResizer 9| Triangle

Figure 2: A simple frameworkfor the example Figure 3: Excerpt from an applicatioresign.

user supplied application specific subclasses

consisting of three dependerdut abstract The abstractclasses havédoeen supplemented
classes. The graphical editor class workth with concrete classes so it is possible to actually
graphical objects and resizers. create a running system.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

» The editor willuse the same service and create alass tree for the framework example of figure 3, now
resizer for a graphical object based on an erdepicted as an object tree.

hanced specification (pattern creation, 3.3). A client can traverse thelass tree andollect all

The editor performs thesgasks using theabstract classeswithin that tree. Itdoesn’t have to make as-
superclasseGraphObject andGraphResizer sumptions about class namegmsition within the
only. Thus, the class tree is encapsulated. No clasglass tree otthe interfaces of their instances. The
outside theclass tree is granted access tarternal editor, for examplemight traverse the tree starting
structure and no accessnisededThe only type in- with GraphObject , puteveryclassinto a list and
formation available to clients outside tblass tree is build the toolbox by creating a buttdor each class
the one offered by the two superclasses. in the list.

However, not all classes in tletass tree are suit-
3.1 Example of Class Retrieval able to create graphical objects. The editor must sort

This section introduces the first one of two techniqueQUt abstractlasses and resizer classes, bectvse

presented in thipaper thatet clients retrieve classes arenot regular concrete graphical object classes. In

from a class tree. Hertheclass tree is traversed and order to 0!0 this, th.e' grgphlcal editor matcleeeg;h
each class is matched against a specification. clgss against apecificationfor concretg g_raphmal
object classes. From tlodass treeshown in figure 4,
During startuptime, the editor builds the toolbox only Triangle and Rectangle are classes of
of available graphical objects classes. In order to dmterest with respect to the toolbox.
this, it collects all classeshich are capable of creat-

ing graphical objects from the class tree. A specification forthe givencase is expressed as

a simple object containing two flagdsAb-

A class, as treatedere, is not just &emplate to stractClass andIsGraphObject . The first
create instances frofut anobject inits ownright. flag denoteshat a class is abstract (orrist, if the
All classes areonnected with each other accordingflag is set to false) and tisecond flag denotebat a
to their inheritance relationshifthus, they form a class is a standalone graphioblectclass thamight
class tree(in case ofsingle inheritance only) or a appear on a canvas. This issimple specification

class graph(in case of multiple inheritance). For suyfficient for the momentThe next chapter elabo-
conveniencel’ll stick to the notion of class tree rates on the notion of specification.

though all concepts work with a class graph as well.
g P grap The editor matches each classtbé graphical

GraphObject object class tree againshe specification. Only the

— rectangle and triangle classes (amine more con-

s 2 crete graphical object classes mbiown in the fig-
[Grathesizer} [Triangle } [Rectangle } ures) respongbositively and show up eventually in

the toolbox. The next chapter discuskes to sup-
ply a classwith its semantics antlow to match it
[TriangleResizer } [RectangleResizer} against a SpeCiﬁcation.

Figure 4: Each classholds a list ofits sub- The class tree traversal anthtching process is
classes. The class tree can be traversed at run- called class retrieval because a number of classes
time and each nodehat is a class, can be adhering to a giverspecificationare retrieved and
matched against a given specification. returned to the client. It can be factored out as a

_ serviceGraphObject offers to its clients, so that
A class tree can be traversed using standard traversgl oitor hasn't got to do theaversal itself (and is
strategies. Each tremnde,tha_t is a _class, IS an in- ,evented from making any assumpti@i®out spe-
stance of the same metaobject. Figure 4 shows thg;. cjasses as wellThis service can be calldtbm

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

the framework classes withohielp fromsubclasses, The editor looks up thelass using this table and
so no factory method is needed. creates an object. This is calléste creation be-
cause it resembles theotion of latebinding: The
class of anew objectthat is to be created deter-
mined at runtime. Late creation can also be offered as
This section presentssecond technique to lookup & an operation of clas&raphObject to its clients.
class based ongiven specification. It relies on pre- |t expects a specification and returnsew instance

built tables that arendexed using a lookundex of a class matching the given specification.
calculated from the specification.

3.2 Example of Late Creation

If the user presses a button fomaw graphical 3.3 Example of Pattern Creation
object, the editor has to create an instance of the cl
associated with the button. Let's assunfm, the
example’s sakethat the editor storeanly a unique
identificationfor the class instead dhe class itself.
This unique identifcation, thelass id, serves as a
simple but effective specification of a class.

a‘?ﬁe basic concepts (class retrieval and late creation)
do not only work with singlelass treedut with any
abstractdesign as well. Arabstractdesign consists
of a number ofabstractcollaborating classes. Their
implementation bysubclassesften introducesidden
dependenciedpr example through covariamédefi-

The editomow has to create asbject of the class nition of operationsthat arenot visible outside the
denoted bythis id. This is the samisk that is per- class tree.

formed wherreading objects from a streamf{la or) L .
g o) @ An example of a simplabstractdesign is the in-

a network link). An id appearing in the stre@as to terplay of the classeGraphResizer and Gra-

I h ' o - . .
be mapped to a class so that an object can be creat?3 Object in figure 2. A resizemraps a graphical

The specification is even simpler than the previougbject both visually and logically. It drawsresize
one: It is an object containing the id orhe editor decoration around a graphical object on the canvas
might again traverse thelass tree and matatach and it represents the graphical object to the editor.
class againsthe specification. However, this is a Figure 5 and 6 show a triangle resizer wrapping a
time consumingrocess. As an alternative, taditor triangle. A user othe editor may resize an object
uses a prebuilt tablehich is indexed by thelass id. only by using a resizer.

This table hadeenbuilt in advance using thiaverse
mapping fromclass to id, so thahe editor can use
an id to lookup the correspondinass. Such a table
can be built for each kind of specificati@ome more
of which are discussed later on.

A resizer class is used factor outthe resizing
functionality from theclass itself. Each graphical
object class might have different resizing behavior, so
for each graphical objectlass there is a special

graphical editor

left triangle triangle resizer

right triangle

Figure 5: The user justesized the righone of Figure 6: Object diagram of the editor in figure

the two triangles. In order to do this, thditor 5. From the editors point of vievall objects
created a resizer object and delegatedasble of have thestatic typeGraphObject or Gra-
resizing to it. phResizer

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

graphical resizer class. A triangle aamly be resized sen, because it is easyitoplementand provides a

by a triangle resizer. If a resizer receives an instanadean and simplenodel. Essentially, it isonly ex-

of a wrongclass it throws arexception (covariant pectedthat there is some kind ofepresentation of
redefinition and design by contract [Mey91, Mey92]).classes as objects, be it class objects, exemplars or

If the user wants to resize a graphical object, th® rototypes.
editor has tofind the matching resizerass. It is not
always feasible tonake eaclyraphical object return 4.1 Class Semantics

its resizer, becausehanging requirementsnight A clause makes an atomic statemeabout a class

force l.JS to con_tlnuously enhancg t@raphOb- revealingtrue or false. It is an instance of a clause
Ject mterf.ace,' JUSt becausbere mlghF be_ movers.,. classwhich represents a specific aspect of another
draggers, |co.n|f|.ers and o_ther_ appl|cat|on-speC|f|cC|aSS,S semantics as an object. Examgiean so far
wrappers. This inly possible if we have source , o onerty clausesvhich consist of flags fasimple
code access to the framework. class properties, foexample whether alass is ab-

It is better to create an instance oGeaphRe- stract ornot. Identification clauseslenote a single
sizer subclassdependent on a given graphical class unambiguously bgiving a unique identifier.
object Thus,the editor creates dependency clause Dependency clausesfer to other classes in order to
which is acertain type of specificatiothat refers to make a dependencglationship explicit, foexample
the currentcomputing contextThis specification is between aesizer and a graphical objecfass. De-
an object consisting of a reference to the graphicgdendency clauses areoften identification clauses
objectclassthe newresizer has to fitWwhen matched (expressed by subclassing, see figure 7).

against it_,each resizer c_lasshecks vv.hether. thas causes are used for two different but complemen-
been designed to work with the graphical object clas?ary purposes. First, alient of a class tree uses

If the specification contains the triangtéass, only

_ _ , clauses to build apecificationfor a class to be re-
the triangle resizer class matches it.

trieved from the tree. Secondckssholds a list of
This process ignherently the same as in late clauses that are said tepresent its semanticas

creation and thus can hgerformed by the same simple objects.

service. Only the specificatiorsre of amore en-

hanced type. The process is calfgttern creation Ao e

because it deals with setting up several related ob- Adapt(Class*);

jects using only theiabstractdesign. These kinds of PN

Clause

designs have been called object behavioledign

. IdClause IsAbstractClause NameClause
patterns in [GHJV93] Adapt(Class*); Adapt(Class*); Adapt(Class*);
1d():
ulong id; bool IsAbstractClass; string sName;
4 Metalevel Architecture 2 2 2N
. . . GraphResizer GraphObject ToolnameClause
This chapter discusses theetalevelarchitecture of Clause Clause Adapt(Class*);
the approach. It isused to managelass properties |Adapt(Class*); Adapt(Class);
and support their specificatioflass semantics as bool lsGraphObject:

well as specifications arerepresented by clauses. Figure 7: The Clause class tree for the

Each clause represents a specific aspect of a class’s framework example shows the discussed

semantics and makes it a first class object. clauses on the left with bolthes andcharac-
The metalevel approach discussed here is only one €rS

possible implementation technique to achieve thgoth specifications andtlass semanticgely on
overall goal of encapsulating class trees. It was ch@jauses. Thus, specification can easily bmatched

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

with a class, because its basic constituents can hdass itself. It surely is possible tetrieve thedata
compared in a simple way (by default an equalityneeded bythe clause instances from external data-
check). bases, macros or other textual specifications. The
object-oriented way proposed hdrasthe advantage
that all data igmmediately type checked, resides at

calculus with clauses ags atomic constituents. the classwhere it belonas and makemssemrovide
Propositional calculus is used fortensionalclass : g P
default semantics.

semanticsFor extensional semantics, considering not
only theclass but all itsnstances too, predicate cal- This might change irfuture versionswith more
culus has to be used. However, propositional calculusol support than justhe underlying language. How-
is not particularly interesting fahe current discus- ever, in ourexperience ihasshown to worksatisfac-
sion, so theest ofthe chapter focuses on clauses andorily and to scale without problem&o, there is
assumes a specification to consist of a single clausecurrently little needfor more advanced specification
techniques.

A specificationis a formula from propositional

A client that creates a clause to part of a
specification provides it with all relevadtata. The The matching process is reduced to matching the
editor, creating &raphObjectClause instance, clauses and evaluating the formula. Matching the
provides it with flagsthat indicate whether the clauses of a specification @®ne bycomparingthem
graphical objectlass has to be abstrastdwhether with their counterpart (if available) in the class’s
it has to be a standalone graphical object class. clause list. This is by default an equalifyeck. The
responsible operation can be specialized tonbte

A classholds a list of clauses to represéntse- . : :
peculiar comparison semantics.

mantics as first class objecGraphObject holds
instances of the clause classd€lause , IsAb- Clause classes aimtroduced for a specific class
stractClause , GraphObjectClause and in the overall system’slass tree. Due tthe substi-
others notmentioned here as welEach clause in- tutability principle [Lis88], subclasses dfat class
stance makes an atomic statement about the class ihdd instances of thelause class too, whereas su-
heldby. Thus, a clause is aifective representation perclasses don't. The general ratdss ofthe sys-
of a specific meta information about a class. tem, Object , holds instances ofsAbstract-
Clause , IdClause etc., but nanstance ofGra-
SohObjectCIause . The last clause hdeenintro-
gucedfor GraphObject and all its subclasses.
GraphObject , in turn, doesn't hold aGraph-
ResizerClause instancebut GraphResizer
does, and so on.

In order to achievehis, the clauséasbeen cre-
ated with the class as its initial parameter. The clau
analyzes theclass and extractthosedata that are
relevant for it. Thus, a clause presents a spegéig
on a class andnakes properties explicthat have
only implicitly been available.

A class’s type interface, operation signatures and
semantics, pre- and postconditions, invariants and
history properties [Mey91, LW93] can be repre-
sented byclauses, too. The clause classes proposed
h(lere are mainly pragmatic: They havéeen intro-

The class itself offerthe dataneeded by a@lause.
For example, each resizer class offersaaidlitional
operationthat returnsthe graphical objectlass the
resizer class habeen designed to worlvith. A

graphical resizer clause asks its resizer class abOéIuce 4 because it could be fores 2 clasdree

the graphical objectlass so that it can bmatched _ " . . ,
against a similar clause from a specification later on.WIII be asked specific questions regarding pro_pertleS
represented by thestauses. Thenetalevel architec-
At first glance thisseems to be atrange turn: ture discussed ithe next subsection showsat new
Formal semantics of a clasare made explicit clause classes can be introduced to alreadsting

through clause$eld bythat class, buthe clauses and encapsulated class tressely based on their
extractthe neededdata forthese semantics from the jnterfaces.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

4.2 Metaobject Extensions A convenient way t@ncapsulate class retrieval is
to make eacklass offer aservice operatiothat per-

Obwous_ly, a class has to laaaxtenqled sahat |t_can forms this task. A class that returns a set of classes is
hold a list of clauses and provides operations to

ich ification inst thesauses. This is a called theroot classfor it. Eachobject of aclass in
map a specificatio ag.al S) the set is guaranteed sapportthe interface declared
straightforward taskot discussed furtheHowever,

it hasbeen lefunclearh | lassesome into by the rootclass. Acompiler can statically rely on
! hasbeen leflunclearnow clause cla: this. In addition, each class maitcliee specification
the system and are distributed to their classes.

the operatiorhasbeen supplied with-or the client,
Some kind of managing facilithas to exist that the root class takes over the role of the interface class
keepstrack of classes anithe clause classes associ-of the class tree.

ated with themThis can be the metaclass or a sepa- The service operation hides how the lookup is per-

rate object dedicated to thisingletask. The manag- f%rme d. The two straightforwardechniques pre-

mrg f?cmtyl/ assogr:a:ei clauiieclslssst,zicvggh g[aasjzst:%efgted in this paper are either traversingcthsstree
¢ e_a €s cggsel sta ces._ : g Pedy using prebuilt tables to perform a table lookup.
their specific classeshat is a certain root class for

the given clause class and all its subclasses Specifications for class retrieval usuatlgnote a set
g ' of classes instead of single class.

Clients use the set of classes the wbass returns
5 Class Tree Encapsulation to gainknowledgeabout available functionality, for
example before presenting a menu item tosar.

The overall idea is simpleClass treeget encapsu- They can use it to decide on how to proceed further.

lated by granting accessly throughclassspecifica-
tions. Classsemanticsare split upinto several dis- .
tinct properties each dhem represented bydause °-2 Late Creation

class. Instances dhese clause classese used 10 | ate creationof an object is the process of creating
both specify the semantics of a certelass and 10 an instance of a class maming only anabstract
build specifications for classes of interest. superclass of that class and giving a specification.

However, therarre at leasthree different ways of | ate creation can beffered as another service
using this idedclass retrieval, late creation and pat-gperation of eachlass. It accepts specification and
tern creation) each serving a different pragmatic purreturns an object. The object (or null, if no object was
pose. A clienthat uses all othemcan successfully created) conforms to the interfadefined by theoot

restrict itsknowledgeabout adesign t(_)its abstract class andprovides the specified properties. Again, a
superclasses. Thushe subclasses amplementa- compiler can statically rely on the interface.

tions of the desigare hiddenand theclass trees are
encapsulated. Thabstract superclassesrve as the
interface classesf the class tree.

It usually isimplemented by looking up thectual
class forthenewobject in a tablenadefor the speci-
fication type. These tables can be prebuilt, for ex-

The next three subsectiogive concise definitions amplefor all specificationsthat consist of asingle
of the threebasic concepts arttie fourth subsection cjause only. Since there is a possibly large number of
gives a conclusioaboutclient specific encapsulation gifferent specificationspne has tomake a choice in
of class trees. the beginning and create further tables on demand.

. If such a clauselenotes aclass unambiguously,
5.1 Class Retrieval the table can be built easily. It is calculated using the
Class retrievalof a set of classes is the process ofhverse mapping fronslass to unambiguouslentifi-
|ooking upa” classesvhich are subclasses of a spe- cation from the clause instanfi that class. If the
cific root class and adhere to a given specification. SPecification is ambiguous, an entry in the table re-

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

veals the set of equivalent classes with respect to tharns the denotedresizer classdependent on the
given specification. Then, further information is graphical object class in the clause.

neededFor example, the client may specifiwhether Clauses that carry suchependencydata are

it is interested in the most general or most specializegla”ed dependency clauseThey are needed to in-
class. This can béone by imposing differerstrate- stantiate an abstradesign using onhjits abstract

gies or functl.(.)n closureson theclass tree_traversal superclasses. Usually thiest object of anabstract
[GHJVO5, Kih95] for adepth or breadtiirst tra- design is created usimggular late creation arttien
versal the other objectaire createdlepending orthis first
However, no general solution to resolve ambigu-oneusing pattern creation. This is a bottom up proc-
ous specifications exists and the client shaoukltke ess thaensures the instantiation of a correaple-
no more assumptions than what it has specified. mentation of a design. Finally, it is possiblesadec-
tively instantiateparts of an abstraaesign.This is
important, because most designs interact with other

designs only partially.
Pattern creationis a special case of late creation for

which the specification ibased on clauses thatfer
to the current computing context.

5.3 Pattern Creation

Thus, the general specificatiofor a new object
that has to fit agiven object constellation is a con-
junction of dependencglauses. Each claugdenti-

In object-oriented systems very often not only &ies the class of an already existing object iscble
singleclass but aumber of collaborating classes arewhich the new object has to match.

subclassed. The collaborating clasgeplement a
new variant of an abstraatesign. They take advan-
tage of beingsubclassed in concert by directhfer-
ring to the other classes’ interfac@fus, objects of Each of the three presented concepékes a differ-
these classes camly be used togethefhis depend- ent contribution to encapsulate implementations of
ency is secretly introduced behind alpstracidesign. potentially anyabstractdesign. Usingall three con-

It is not visible to clients of thabstract superclasses. cepts together, no creation aselection process has
This has to be taken into account, ii@vobject of a to know moreaboutthe intendedclasses and their
class ofthe abstractdesign is to be created using lateinstances than the (possibabstract)interface the
creation. Thusthe specificatiorhas to refer to the client chooses to work with.

objects, that ighe currentcomputing context, the
new object has to fit.

5.4 Clients and Encapsulation

It has to be stressed that cléisse encapsulation
is always done from a client’s perspectiker differ-

A clauserefers to the current computing contextent clients different subtrees of the overddsstree
if it is built on behalf of objects of that contefdr becomeencapsulated. Fahe general algorithm of
example by referencing the objectdassesRefer- object activation and passivation the relevant classes
ring to the computing context lets a clagsery data areObject orPersistent . All otherclasses are
about classlependenciebased on a currertbject hidden behind thenkor GraphEditor the classes
constellation. For example, GraphResizer- GraphObject andGraphResizer arerelevant
Clause instances refer to thelass ofthe graphical and all subclasses ahidden behind thentpo. For
object thenewresizer has to fit. This can bbeatched each graphical resizer class a specific graphical ob-
easily against the internal clauses of a resit&ss. ject class is relevarthe interface of which iknows
Only the correct resizer class responds positively. in detail.

A table can be built using thenierse mapping Thus, no overall class tree encapsulation is
from graphical object class to resizer class. This tablachieved (which wouldn’'t make sense anyway) but
canthen be indexed with theassreferencgor its id always a client specific one.
or symbol) from the clause. The lookugturns re-

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

6 Impacts and Discussion requirements anchemory limits whether it is feasible
and sensible. llour C++and Smalltalk frameworks

At least threeareasworth of discussing can be iden- [Rz95 RS95], wemplementedclass retrieval as a
tified: The implementation techniques, deplicabil- class tree traversal and late creation for specifications
ity of the techniques and the impact and consequencggnsisting of a singledClause instance as a table

of class tree encapsulation. lookup.

. . Classretrieval wasnever applied in timeritical
6.1 Implementation Techniques parts of ourinteractive systems. Tha@emory over-

Metaobject protocols haveeen well justified for headfor representingclass semantics as a set of
dynamically typed languagegAtt93, KAR+93, clause instances is fixed and can be calculated in
KRB91]. They are used in many application frame- advance. It didn’t lead to problems for us.

works for statically typed languages|CIRMI3, Late creation was used tpervasively replace
GOP90, LVC89, WG94], becausgnguage provided factory methods.Late creation of an object uses up
features [Mey92, Str94] areften not sufficient. more timethan a factorymethodcall, however, the
Ways ofdoing this in C++ areshown in[BKS92, gelay is constant and could heglectedfor most of
Gro93, 1L90, PWJ92]. the situations we had to deal with.

Thedownside of an explicit metalevaichitecture pacilities forretrieving thedata for clasproper-

is some memoryand management overhead. Theges have to be introduced@his paper proposed the
approach proposediere increases this drawback, simple technique of providingclass properties
becausememory consumption goes up due to theprough simpleaccess operations of a class. Clause
clausesheld by eacltlass. Itdepends on the type of ¢jasses aredesigned using theseperations. Not
application and itsenvironment whethethis is a haying to specializdactory methodsthat were re-
problem. Today, this shouldn’'t besavere problem placed by late creation makes fqv the additional
with most applications. effort of writing these access operations. Tiess

Classretrieval and late creation use opretime ~ Property access operations may be reused by new
thansimplefactory methods. If aclass tree traversal clause classewthile factory methods serve only a
is involved, it should carefully be analyzedhether ~Single pupose. Moreover, the access operations pro-
performance problems mighgsult. If a tabldookup Vide default semantics and needn’t be specialized by

is sufficient, only constant time is consumed. every newclass. Thuscompared to factorgnethods,

_ _ _ class retrieval and late creatioeduce coding effort
The describedmetalevel architecture integrates in the long run.

easily with current application frameworks, at least
those mentionedbove.Classretrieval and late crea-)
tion will then beavailable forevery class. Clauses 6-3 Class Tree Encapsulation

and specifications arype checkedecause they are The most relevant problem of tigproach is also
object-oriented right from the beginning. It is possiblegne ofits biggest strengths. The configuration of a
to introducenew explicit semantics to a class tree atsystemhasnow to be specified on a metalevel, for
any time as long as the classes provide sufficatd example a makefileClasses of encapsulated class
to derivethat semanticsTool support forspecifying trees have to binked explicitly, because thegre no
semantics can make any new clause class possible. |ongerstatically referenced by client code. Otherwise
they will not be included in the resulting executable.

6.2 Basic Framework Applicability Careful attention has to be paid in order ndbtget

, . ., . relevant classes.
Classretrieval and late creation can be applied in

basic frameworkdesign. It depends on the speed However, itis much better to specify systems on a
metalevel as opposed to writing cotleat causes

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

classes to bdinked. This avoids system variants the creation processes from the clietitat initiate
maintenance problems. In the lomgn it can be them.Factorymethodsareused to create the correct
imaginedthat variants arepecified solely on a tool objects of a dependent class, abstract factbriadle
or makefile level whictboth draw on a@ommon pool factory methoddor a specificsystem and prototypes
of available classes. This is already a reality with theervejust like exemplars as aubstitute for classes.
applications we work with: It is specified in a make-Builders are objects that perform the creation of
file which tools, materials and mediatosse to be complex structureslike compound documents. A
linked. Thus, weeasily create different system vari- builder has arabstractinterfacethat decouples the
ants be it for restricted use, full usesystem main- client from the internal complexity of ttsructure to
tenance. be built.

The main driving principle behind the three con- Chambers introduces Predicate Classes [Cha93]
cepts and thenetalevelarchitecture is the notion of as a newlinguistic concept forprogramming lan-
encapsulation and information hiding. Though theguages. Predicate classes are ordinary classes that
well known benefitsapply, the situation ismore have a predicate associated withEvery objecthat
complicated. Different clientgeeddifferent knowl- fulfills the predicate automatically becomes an in-
edgeabout interfaces. Thaotion of client specific stance of that predicate cla3$ius, methoddispatch
class tree encapsulation expresses this. Elfefit's can be based on thaate of an object. The pro-
knowledgeabout interfaces is restricted titose in- gramming languagéas to offerdynamic reconfigu-
terfaces it finally chooses to work with. Thieree ration of class hierarchies and must be capable of
concepts of class retrieval, late creation and pattefinitiating this task itself.

creation hide the selectiorand creation process of Lieberherr etal. generate programs from specifi-

objects. They' Su,cc.e ssfully restrict a_ (_:Ilerkhs_owl- cations based on propagation patterns and class dic-
edge_ of an object§ interface to the minimum mterfac«telonary graphs (adaptiveprogramming [LSX94,
possible and sensible. LX94]). An adaptive program consists ofnamber

The concepts ease configuration of system varief propagation patterns thapecify constraints on
ants andevolution ofclass treesThey enhance in- class relationships. Tgenerate aractual program,
formation hidingand thus intellectual manageability. the propagationpatterns arecustomized byclass
They reduce the learning efforeeded taunderstand graphswhich set up a class structuoenforming to
a framework because detalike classnhames and the pattern constraints. Thus, an adaptpr@gram
class tree structureecomeless important. User can denotes a family oprogramswhich are constrained
concentrate on the relevaattstractiortheyareinter- by the propagatiopatterns. Lieberherr &t. rely on
ested in. a CASE system.

General approaches to distributedvironments

like CORBA[OMG91, OMG92]work with interface
7 Related Work definitionsfor objects to be returned from a request.
Several aspects of the work presented can be foundThus, interface definition languagefDL94] and
related works. Coplien uses exemplar based pr@bject request brokeare needed. In addition, adap-
gramming as an alternative tolasses (generic tors between dynamically specifiethterfaces and
autonomous exempladiom [Cop92]) and supplies their implementations have to be invented.
them with make operations to create objectsidden

subclasses. Thachieveslasshiding as described in
chapter 2. 8 Outlook

Gamma efal. use factorymethods,abstract fac- Currently the two most important open issuest@oé
tories, builders and prototypes [GHJV95] to separatsupport forconfiguring systenvariants andmeans

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

for embedding dynamically linkedlbraries. A de-
scription for classlependencielas to bentroduced,

BKS92 Frank Buschmann, KonraHliefer and
Michael Stal. “A Runtime Type Information System

for example based on [HHG90, Sha94, AG94] ofFor C++.” Tools-7,Conference Proceedingg&dited
parts of [SDK+95,GAO94], and supported by a by Georg Heeg, Boris Magnusson and Bertrand

tool. The tool eventualhhas togenerate a list of
classes to bdelivered eithestaticallylinked or as a
dynamcally linked library.

Meyer. New York, London: Prentice-Halll992.
265-274.

Cha93 Craig Chambers. “Predicate Classes.”

Compared to object request brokers and interfaceCOOP '93, LNCS 707Conference Proceedings
definition languages the concepts proposed in thiBerlin, Heideberg: Springer-Verlag, 1993. 268-296.

paper arequite simple. However, thegan be inte-
grated with current application frameworks afuh’t
require a major overhead in order tosip Thiseasy
integration with current metaobject protocotakes
the concepts usableow and might eventuallynake
them into abasic techniquefor framework design.

The experiences with using the techniques in oue0p92

CIRM93 Roy H. Campbell, Nayeem Islam, David
Raila and Peter MadanyDesigning andmplement-
ing Choices: An Object-Oriented System @¥+.”
Communications of the ACMG6, 9 (September
1993): 117-126.

James O. CoplienAdvanced C++:

frameworksare very promising: Once they were in- Programming Styles and IdiomReading,Massa-

troduced,everyone wanted tose them and did so

successfully. We hope to give an experience report g§p0g4

chusetts: Addison-Wesley, 1992.
David Garlan, Robert Ben and John

the wide variety of applications of class tree encapsihckerbloom. “Exploiting Style in Architectural De-

lation in the near future.

Acknowledgments

I wish to thank Ralph Johnson and Hekti#lighoven
who both reviewed thpaper andhelped me define its
scope in a way suitable for OOPSLA.

I would like to thank Walter Bischofberger,
Bradley Edelman, Kai-Uwdatzel, Thomas Kofler,
Petervon Savigny, WolfSiberski and thanonymous
reviewersfor their supporting and criticéut always
helpful comments on the paper.

Bibliography

AG94 Robert Alen and David Garlan.
“Formalizing Architectural Connection.ICSE-16,
Conference Proceedingdos Alamitos, California:
IEEE Computer Society Press, 1994. 71-80.

Att93 Giuseppe Attardi. “Metaobject Pro-
gramming in CLOS.” Object-Oriented Program-
ming: The CLOSPerspective Edited by Andreas
Paepcke. Cambrigde, MassachusefHT Press,

1993. 119-131.

sign Environments.SIGSOFT ’'94,Software Engi-
neering Noted9, 5 (December 1994): 175-188.

GHJV93 Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides. “Desigatterns: Ab-
straction and Reuse of Object-Orient&esign.”
ECOOP '93, LNCS 707Conference Proceedings
1993. 406-431.

GHJV95 Erich Gamma, Richard Helm, Ralph
Johnson and John VlissiddSesign Patterns: Ele-
ments of Reusable Object-Oriented Softwétead-
ing, Massachusetts: Addison-Wesley, 1995.

GOP90 Keith E. Gorlen, Sanford M. Orlow and
Perry S. Plexiko.Data Abstraction and Object-
Oriented Programming in C++John Wiley & Sons

Ltd., 1990.

Gro93 Mark Grossman. “Object I/@nd Run-
time Type Information via Automatic Cod&enera-
tion in C++.” Journal of Object-Oriented Pro-
gramming6, 4 (July/August 1993): 34-42.

HHG90 Richard HelmJlan M. Holland and Di-
payan Gangopadhyay. “Contracts: Specifyidehav-
ioral Compositions in Object-Oriented Systems.”

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

OOPSLA '90, ACM SIGPLAN Notices25, 10 '93, LNCS 707, Conference ProceedingsBerlin,
(October 1990): 169-180. Heideberg: Springer-Verlag, 1993. 118-141.

IDL94 Interface Definition Language Work- LX94 Karl J. Lieberherr and Cun Xiao.
shop,ACM SIGPLAN Notice29, 8 (August 1994). “Customizing Adaptive Software to Object-Oriented
Software Using Grammars.”International Journal
of Foundations of Computer Scienbe 2 (1994):
179-208.

IL90 John A. Interrante aniflark A. Linton.
“Run-Time Access to Type Information i@++.”
USENIX, Conference Proceedings 199B3-240.

KAR+93 Gregor Kiczales, J. MichaeRAshley,
Luis H. Rodriguezlr., Amin Vahdat and Daniel G.
Bobrow. “Metaobject Protocols: Why We Want
Them and What Else TheyCan Do.” Object-
Oriented Programming: The CLO®erspective Mey92 Bertrand MeyerEiffel. The Language
Edited by Andreas Paepcke. Cambridggssachu- New York, London: Prentice-Hall, 1992.

setts: MIT Press, 1993. 101-118. OMG91 Object ManagemenGroup. The Com-
KRB91 Gregor Kiczales, Jim des Rivieres andmon Object Request Broker: Architecture and
Daniel G. BobrowThe Art of the Metaobjetroto- Specification Revision 1.1 (OMG Document
col. Cambridge, Massachusetts: TIMIT Press, 91.12.1), 1991.

1991. OMG92 Object ManagementGroup. Object
Kuh95 Thomas Kuhne. “Parameterization Ver- Management and Architecture Guid2nd Edition
sus Inheritance.” TOOLS-15, Conference Proceed- (OMG Document 92.11.1), 1992.

ings Edited by Christine Mingins_ and Bertrand PWJ92 Peter-AlexandePauw,Ronald Werring
gﬂgeg;ZSNeW York, London: Prentice-Hall.995. and Angelique Jansen. “An Operational Metadata

' System forC++.” Tools-8,Conference Proceedings
Lis88 BarbaraLiskov. “Data Abstraction and Edited by Raimund Ege, Madhu Singh and Bertrand
Hierarchy.” OOPSLA '87(Addendum),ACM SIG- Meyer. New York, London: Prentice-Halll992.
PLAN Notice®23, 5 (Mai 1988): 17-34. 215-223.

LS94 Victor B. Lortz and Kang G. Shin. RBP+91 James Rumbaugh, Michael Blaha, Wil-
“Combining Contracts and Exemplar-Based Pro-liam Premerlani, Frederick Eddy and William Lo-
gramming for Class Hiding and Customization.” rensenObject-Oriented Modeling and Desighon-
OOPSLA '94, ACM SIGPLAN Notices29, 10 don: Prentice-Hall, 1991.

(October 1994): 453-467. Rum95 James RumbaugiMOMT: The Object
LSX94 Karl J. Lieberherr,gnacio Silva-Lepe Model.” Journal of Object-Oriented Programming
and Cun Xiao. “Adaptive Object-Oriented Pro-7, 8 (January 1995): 21-27.

gramming.” Communications of the ACM7, 5 RS95 Dirk Riehle and Martin Schyder.

(May 1994): 94-101. “Design and Implementation of a Smalltalk Applica-
LVC89 Mark A. Linton, John M. Vlissides and tion Framework forthe Tools andVaterials Meta-
Paul R. Calder.“Composing User Interfacewith phor.” UBILAB Technical Report No. 95.6.1n
InterViews.” I[EEE Compute2, 2 (Februarni989): preparation.

8-22. RZ95 Dirk Riehle and Heinz Zullighoven. “A

LW93 BarbaraLiskov and Jeannette Wing. “A Pattern Language for Tool Construction dntkgra-

New Definition of theSubtype Relation.” ECOOP tion Based on the Tools aridaterials Metaphor.”
Pattern Languages of Program DesigBdited by

Mey91 Bertrand Meyer. “Design by Contract.”

Advances in Object-Oriented Software Engineering
Edited by Dino Mandrioli und Bertrand Meyer. New
York, London: Prentice-Hall, 1991. 1-50.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

James O. Coplien and Douglas C. Schmidt. Reading,
Massachusetts: Addison-Wesley, 1995. 9-42.

SDK+95 Mary Shaw, RoberDeLine, Daniel V.
Klein, Theodore LRoss, DavidM.Young and Greg-
ory Zelesnik.“Abstractions for SoftwareArchitec-
ture and Tools to Suppoithem.” IEEE Transac-
tions on Software Engineeringo appeatr.

Sha94 Mary Shaw. “Procedure Callare the
Assembly Language ofSoftware Interconnection:
Connectors Deserve First-CleSttus.”Proceedings

of the Workshop on Studies of Software Design
New York: Springer-Verlag, 1994.

Stro4 Bjarne Stroustrup. The Design and
Evolution of C++ Reading, Massachusetts: Addi-
son-Wesley, 1994,

WGo4 André Weinand and Erich Gamma.
“ET++ — a PortableHHomogenou£lass Library and
Application Framework.” Computer Science Re-
search at UBILAB Edited by Walter R. Bischof-
berger and Hans-Peter Frei. KonstariZniver-
sitdtsverlag Konstanz, 1994. 66-92.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA '95Conference Proceedings.

