
1 Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conf. Proceedings. 14 pages.
2 Now at: UBILAB, Union Bank of Switzerland. CH-8021 Zürich, Switzerland. riehle@ubilab.ubs.ch

How and Why to Encapsulate Class Trees1

Dirk Riehle2

riehle@informatik.uni-hamburg.de
Software Engineering Group, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract
A good reusable framework, pattern or module interface usually is represented by abstract
classes. They form an abstract design and leave the implementation to concrete subclasses.
The abstract design is instantiated by naming these subclasses. Unfortunately, this exposes
implementation details like class names and class tree structures. The paper gives a ration-
ale and a general metaobject protocol design that encapsulates whole class trees. Clients of
an abstract design retrieve classes and create objects based on class semantics specifica-
tions. Using abstract classes as the only interface enhances information hiding and makes it
easier both to evolve a system and to configure system variants.

1 Introduction
A good framework consists of a set of collaborating
classes that clarify the overall design, class depend-
encies and distribution of responsibilities between
them. These classes are usually abstract classes that
leave implementation details to subclasses. Different
subclasses implement different variants of the ab-
stract design. Users of a framework supply it with
subclasses to embed their application specific func-
tionality into the framework.

To actually start up a system, objects of the user
supplied subclasses have to be created and thus have
to be named. Most current application frameworks
rely on so called factory methods: These are opera-

tions whose sole purpose is to create an object of a
related class specialized to fit the current class. The
first application object uses factory methods to create
the whole layer of user provided application objects.

Factory methods aren’t essential because they are
purely administrative. Their impact is even negative,
because they open up class trees by explicitly naming
concrete subclasses. Often a new factory method
requires a new subclass to be written! However, the
framework uses objects returned from factory meth-
ods under their abstract superclass’s interface only.
Thus, it should be the framework that retrieves user
provided classes and creates objects of them.

This can be achieved by encapsulating class trees
as presented in this paper. Class trees are hidden
behind their abstract superclasses which serve as
their interface. Clients use class specifications to
retrieve classes (class retrieval) and create objects
(late and pattern creation) from the encapsulated
class tree. The specification mechanism is capable of
dealing with hidden dependencies between subclasses.

Copyright  1995 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that new
copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request Permissions from Publications Dept, ACM Inc., Fax
+1 (212) 869-0481, or <permissions@acm.org>.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

Thus, it can be used to create several related objects
using their abstract superclasses only.

Class specifications are built from clauses, which
represent class properties as lightweight objects.
These specifications are object-oriented right from
the beginning and need no additional language or tool
support. The strategies to lookup classes are so fast
(in the order of factory methods) that the concepts
can be incorporated into basic framework design.

The benefits of encapsulating class trees, be it for
single trees or full fledged abstract designs of col-
laborating and dependent classes, are manifold:

• If provided with the proper data for class specifi-
cations, less code needs to be written. For exam-
ple, the user is freed from specializing factory
methods.

• Users can focus on the relevant abstraction and
the specification of needed functionality. They
don’t have to deal with the implementation of an
abstract design by naming specific subclasses.

• It is easier to change an encapsulated class tree,
because its class names and class tree structure
are hidden. Clients that work with abstract classes
only are not affected by changes to the tree’s
structure.

• Classes can be plugged into the tree and removed
with only local consequences. This eases evolution
and configuration of system variants.

Encapsulating class trees makes it easier to use ap-
plication frameworks, to adapt different functionality
for system variants and to evolve class trees.

The next chapter contrasts this paper with a pre-
vious OOPSLA paper. Chapter 3 introduces an ex-
ample framework and discusses the three main con-
cepts needed to encapsulate class trees. Chapter 4
discusses how to represent class properties and
specifications in an object-oriented way. Chapter 5
then gives concise definitions of the three main con-
cepts from chapter 3. Chapter 6 discusses the impact
of applying the techniques on both a technical and
conceptual level. Chapter 7 presents related work and
chapter 8 rounds up the paper with conclusions and
an outlook on future work.

2 Related Work on Class Hiding
In an OOPSLA ’94 paper [LS94], Lortz and Shin
present a rationale for class hiding: An abstract
service class provides the interface for clients but
leaves open implementation details. They are filled
out by concrete subclasses each with slightly differ-
ing semantics. Examples of class semantics are per-
formance characteristics, persistence (yes/no), taking
advantage of special knowledge, implementation
strategies etc.

Clients of the abstract service don’t know the
subclasses by name. A client that wishes to create an
object of the abstract service class specifies a con-
tract for it. A contract expresses the required proper-
ties as strings consisting of keywords and other ex-
pressions, for example “persistent; range-checked;
sparse; size=1000.” An object returned from the
creation process is guaranteed to satisfy these re-
quirements.

The client calls a special operation of the abstract
service class in order to create an object and provides
it with the contract. The abstract service class holds a
list of exemplars each of them representing a sub-
class. An exemplar is a regular instance of its class
that serves as a substitute for it in languages that
don’t make classes first class objects, for example
C++ or Eiffel. The abstract service class asks each
exemplar whether it fits the given contract. If so, it is
cloned and returned. Thus, the subclasses are hidden
from the client though eventually objects of them are
created.

Lortz and Shin’s work can be interpreted to con-
tribute to three different areas of class hiding. Their
approach supports the architectural abstraction of a
type with several hidden implementations, provides a
string based specification mechanism and presents
exemplar based programming as a design that makes
class hiding possible.

This paper goes some significant steps further in
all three areas. It shows that not only implementa-
tions of isolated abstract service classes can be hid-
den from the client but implementations of any ab-
stract design consisting of collaborating and depend-
ent classes.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

It further shows how a standard metalevel archi-
tectures can be extended to support the needed speci-
fication mechanism. The specification mechanism is
object-oriented and thus directly supported by the
underlying language. Class lookup for given specifi-
cations can be performed by simple table lookups.

3 Overview of Concepts
Figure 1 shows a graphical editor that serves as an
example throughout the paper. The editor is used to
draw and arrange graphical objects. They are created
from the toolbox on the left side of the window.

Figure 1: The graphical editor shows a toolbox
of graphical objects classes on the left and
some instances of them on the canvas.

The editor is built from the framework shown in fig-
ure 2. The three classes are sufficient to reveal all the
relevant details of the concepts to be discussed. The

figure shows a bold line that separates application
specific subclasses from the framework classes.
Application specific classes are, for example, rec-
tangle and triangle classes as shown in figure 1 and
resizer classes which are wrapped around a graphical
object both visually and logically in order to resize it.

Figure 3 shows four of the application specific
subclasses of the editor in figure 1. It is these classes
that make the abstract design of figure 2 concrete and
let the editor create actual graphical objects. How-
ever, from the editor’s point of view it is irrelevant
whether it is dealing with rectangles and triangles or
symbols for resistors and capacitors. It only relies on
the abstract classes of figure 2.

The graphical notation of this paper is based on
OMT [RBP+91, Rum95]. Classes are drawn as rec-
tangles and use-relationships are drawn as arrows.
GraphResizer is a subclass of GraphObject .
This is shown by the triangle symbol on the link con-
necting both classes. Objects are depicted as rounded
rectangles.

The next subsections show how the editor class of
the framework works with the user-provided applica-
tion classes without statically referencing them.

• The editor will retrieve the classes Rectangle
and Triangle from the GraphObject class
tree to build the toolbox (class retrieval, 3.1).

• The editor will create objects of the hidden
graphical object classes using a simple class
specification (late creation, 3.2).

GraphObject

user supplied application specific subclasses

GraphEditor

GraphResizer

TriangleResizer

RectangleResizer

Triangle

Rectangle

GraphObject

GraphResizer

Figure 2: A simple framework for the example
consisting of three dependent but abstract
classes. The graphical editor class works with
graphical objects and resizers.

Figure 3: Excerpt from an application design.
The abstract classes have been supplemented
with concrete classes so it is possible to actually
create a running system.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

• The editor will use the same service and create a
resizer for a graphical object based on an en-
hanced specification (pattern creation, 3.3).

The editor performs these tasks using the abstract
superclasses GraphObject and GraphResizer
only. Thus, the class tree is encapsulated. No class
outside the class tree is granted access to its internal
structure and no access is needed. The only type in-
formation available to clients outside the class tree is
the one offered by the two superclasses.

3.1 Example of Class Retrieval

This section introduces the first one of two techniques
presented in this paper that let clients retrieve classes
from a class tree. Here, the class tree is traversed and
each class is matched against a specification.

During startup time, the editor builds the toolbox
of available graphical objects classes. In order to do
this, it collects all classes which are capable of creat-
ing graphical objects from the class tree.

A class, as treated here, is not just a template to
create instances from but an object in its own right.
All classes are connected with each other according
to their inheritance relationship. Thus, they form a
class tree (in case of single inheritance only) or a
class graph (in case of multiple inheritance). For
convenience I’ll stick to the notion of class tree
though all concepts work with a class graph as well.

RectangleResizer

Triangle

TriangleResizer

RectangleGraphResizer

GraphObject

Figure 4: Each class holds a list of its sub-
classes. The class tree can be traversed at run-
time and each node, that is a class, can be
matched against a given specification.

A class tree can be traversed using standard traversal
strategies. Each tree node, that is a class, is an in-
stance of the same metaobject. Figure 4 shows the

class tree for the framework example of figure 3, now
depicted as an object tree.

A client can traverse the class tree and collect all
classes within that tree. It doesn’t have to make as-
sumptions about class names, position within the
class tree or the interfaces of their instances. The
editor, for example, might traverse the tree starting
with GraphObject , put every class into a list and
build the toolbox by creating a button for each class
in the list.

However, not all classes in the class tree are suit-
able to create graphical objects. The editor must sort
out abstract classes and resizer classes, because they
are not regular concrete graphical object classes. In
order to do this, the graphical editor matches each
class against a specification for concrete graphical
object classes. From the class tree shown in figure 4,
only Triangle and Rectangle are classes of
interest with respect to the toolbox.

A specification for the given case is expressed as
a simple object containing two flags: IsAb-
stractClass and IsGraphObject . The first
flag denotes that a class is abstract (or is not, if the
flag is set to false) and the second flag denotes that a
class is a standalone graphical object class that might
appear on a canvas. This is a simple specification
sufficient for the moment. The next chapter elabo-
rates on the notion of specification.

The editor matches each class of the graphical
object class tree against the specification. Only the
rectangle and triangle classes (and some more con-
crete graphical object classes not shown in the fig-
ures) respond positively and show up eventually in
the toolbox. The next chapter discusses how to sup-
ply a class with its semantics and how to match it
against a specification.

The class tree traversal and matching process is
called class retrieval, because a number of classes
adhering to a given specification are retrieved and
returned to the client. It can be factored out as a
service GraphObject offers to its clients, so that
the editor hasn’t got to do the traversal itself (and is
prevented from making any assumptions about spe-
cific classes as well). This service can be called from

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

the framework classes without help from subclasses,
so no factory method is needed.

3.2 Example of Late Creation

This section presents a second technique to lookup a
class based on a given specification. It relies on pre-
built tables that are indexed using a lookup index
calculated from the specification.

If the user presses a button for a new graphical
object, the editor has to create an instance of the class
associated with the button. Let’s assume, for the
example’s sake, that the editor stored only a unique
identification for the class instead of the class itself.
This unique identifcation, the class id, serves as a
simple but effective specification of a class.

The editor now has to create an object of the class
denoted by this id. This is the same task that is per-
formed when reading objects from a stream (a file or
a network link). An id appearing in the stream has to
be mapped to a class so that an object can be created.

The specification is even simpler than the previous
one: It is an object containing the id only. The editor
might again traverse the class tree and match each
class against the specification. However, this is a
time consuming process. As an alternative, the editor
uses a prebuilt table which is indexed by the class id.
This table has been built in advance using the inverse
mapping from class to id, so that the editor can use
an id to lookup the corresponding class. Such a table
can be built for each kind of specification, some more
of which are discussed later on.

The editor looks up the class using this table and
creates an object. This is called late creation, be-
cause it resembles the notion of late binding: The
class of a new object that is to be created is deter-
mined at runtime. Late creation can also be offered as
an operation of class GraphObject to its clients.
It expects a specification and returns a new instance
of a class matching the given specification.

3.3 Example of Pattern Creation

The basic concepts (class retrieval and late creation)
do not only work with single class trees but with any
abstract design as well. An abstract design consists
of a number of abstract collaborating classes. Their
implementation by subclasses often introduces hidden
dependencies, for example through covariant redefi-
nition of operations, that are not visible outside the
class tree.

An example of a simple abstract design is the in-
terplay of the classes GraphResizer and Gra-
phObject in figure 2. A resizer wraps a graphical
object both visually and logically. It draws a resize
decoration around a graphical object on the canvas
and it represents the graphical object to the editor.
Figure 5 and 6 show a triangle resizer wrapping a
triangle. A user of the editor may resize an object
only by using a resizer.

A resizer class is used to factor out the resizing
functionality from the class itself. Each graphical
object class might have different resizing behavior, so
for each graphical object class there is a special

triangle resizerleft triangle

right triangle

graphical editor

Figure 5: The user just resized the right one of
the two triangles. In order to do this, the editor
created a resizer object and delegated the task of
resizing to it.

Figure 6: Object diagram of the editor in figure
5. From the editors point of view, all objects
have the static type GraphObject or Gra-
phResizer .

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

graphical resizer class. A triangle can only be resized
by a triangle resizer. If a resizer receives an instance
of a wrong class it throws an exception (covariant
redefinition and design by contract [Mey91, Mey92]).

If the user wants to resize a graphical object, the
editor has to find the matching resizer class. It is not
always feasible to make each graphical object return
its resizer, because changing requirements might
force us to continuously enhance the GraphOb-
ject interface, just because there might be movers,
draggers, iconifiers and other application-specific
wrappers. This is only possible if we have source
code access to the framework.

It is better to create an instance of a GraphRe-
sizer subclass dependent on a given graphical
object. Thus, the editor creates a dependency clause,
which is a certain type of specification that refers to
the current computing context. This specification is
an object consisting of a reference to the graphical
object class the new resizer has to fit. When matched
against it, each resizer class checks whether it has
been designed to work with the graphical object class.
If the specification contains the triangle class, only
the triangle resizer class matches it.

This process is inherently the same as in late
creation and thus can be performed by the same
service. Only the specifications are of a more en-
hanced type. The process is called pattern creation,
because it deals with setting up several related ob-
jects using only their abstract design. These kinds of
designs have been called object behavioral design
patterns in [GHJV93].

4 Metalevel Architecture
This chapter discusses the metalevel architecture of
the approach. It is used to manage class properties
and support their specification. Class semantics as
well as specifications are represented by clauses.
Each clause represents a specific aspect of a class’s
semantics and makes it a first class object.

The metalevel approach discussed here is only one
possible implementation technique to achieve the
overall goal of encapsulating class trees. It was cho-

sen, because it is easy to implement and provides a
clean and simple model. Essentially, it is only ex-
pected that there is some kind of representation of
classes as objects, be it class objects, exemplars or
prototypes.

4.1 Class Semantics

A clause makes an atomic statement about a class
revealing true or false. It is an instance of a clause
class which represents a specific aspect of another
class’s semantics as an object. Examples given so far
are property clauses which consist of flags for simple
class properties, for example whether a class is ab-
stract or not. Identification clauses denote a single
class unambiguously by giving a unique identifier.
Dependency clauses refer to other classes in order to
make a dependency relationship explicit, for example
between a resizer and a graphical object class. De-
pendency clauses are often identification clauses
(expressed by subclassing, see figure 7).

Clauses are used for two different but complemen-
tary purposes. First, a client of a class tree uses
clauses to build a specification for a class to be re-
trieved from the tree. Second, a class holds a list of
clauses that are said to represent its semantics as
simple objects.

GraphObject
Clause

Adapt(Class*);

bool IsGraphObject;

GraphResizer
Clause

Adapt(Class*);

IdClause
Adapt(Class*);
Id();
ulong id;

Clause
Match(Clause*);
Adapt(Class*);

IsAbstractClause
Adapt(Class*);

bool IsAbstractClass;

ToolnameClause
Adapt(Class*);

NameClause
Adapt(Class*);

string sName;

Figure 7: The Clause class tree for the
framework example shows the discussed
clauses on the left with bold lines and charac-
ters.

Both specifications and class semantics rely on
clauses. Thus, a specification can easily be matched

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

with a class, because its basic constituents can be
compared in a simple way (by default an equality
check).

A specification is a formula from propositional
calculus with clauses as its atomic constituents.
Propositional calculus is used for intensional class
semantics. For extensional semantics, considering not
only the class but all its instances too, predicate cal-
culus has to be used. However, propositional calculus
is not particularly interesting for the current discus-
sion, so the rest of the chapter focuses on clauses and
assumes a specification to consist of a single clause.

A client that creates a clause to be part of a
specification provides it with all relevant data. The
editor, creating a GraphObjectClause instance,
provides it with flags that indicate whether the
graphical object class has to be abstract and whether
it has to be a standalone graphical object class.

A class holds a list of clauses to represent its se-
mantics as first class objects. GraphObject holds
instances of the clause classes IdClause , IsAb-
stractClause , GraphObjectClause and
others not mentioned here as well. Each clause in-
stance makes an atomic statement about the class it is
held by. Thus, a clause is an effective representation
of a specific meta information about a class.

In order to achieve this, the clause has been cre-
ated with the class as its initial parameter. The clause
analyzes the class and extracts those data that are
relevant for it. Thus, a clause presents a specific view
on a class and makes properties explicit that have
only implicitly been available.

The class itself offers the data needed by a clause.
For example, each resizer class offers an additional
operation that returns the graphical object class the
resizer class has been designed to work with. A
graphical resizer clause asks its resizer class about
the graphical object class so that it can be matched
against a similar clause from a specification later on.

At first glance this seems to be a strange turn:
Formal semantics of a class are made explicit
through clauses held by that class, but the clauses
extract the needed data for these semantics from the

class itself. It surely is possible to retrieve the data
needed by the clause instances from external data-
bases, macros or other textual specifications. The
object-oriented way proposed here has the advantage
that all data is immediately type checked, resides at
the class where it belongs and makes classes provide
default semantics.

This might change in future versions with more
tool support than just the underlying language. How-
ever, in our experience it has shown to work satisfac-
torily and to scale without problems. So, there is
currently little need for more advanced specification
techniques.

The matching process is reduced to matching the
clauses and evaluating the formula. Matching the
clauses of a specification is done by comparing them
with their counterpart (if available) in the class’s
clause list. This is by default an equality check. The
responsible operation can be specialized to fit more
peculiar comparison semantics.

Clause classes are introduced for a specific class
in the overall system’s class tree. Due to the substi-
tutability principle [Lis88], subclasses of that class
hold instances of the clause class too, whereas su-
perclasses don’t. The general root class of the sys-
tem, Object , holds instances of IsAbstract-
Clause , IdClause etc., but no instance of Gra-
phObjectClause . The last clause has been intro-
duced for GraphObject and all its subclasses.
GraphObject , in turn, doesn’t hold a Graph-
ResizerClause instance, but GraphResizer
does, and so on.

A class’s type interface, operation signatures and
semantics, pre- and postconditions, invariants and
history properties [Mey91, LW93] can be repre-
sented by clauses, too. The clause classes proposed
here are mainly pragmatic: They have been intro-
duced because it could be foreseen that a class tree
will be asked specific questions regarding properties
represented by these clauses. The metalevel architec-
ture discussed in the next subsection shows that new
clause classes can be introduced to already existing
and encapsulated class trees solely based on their
interfaces.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

4.2 Metaobject Extensions

Obviously, a class has to be extended so that it can
hold a list of clauses and provides operations to
match a specification against these clauses. This is a
straightforward task not discussed further. However,
it has been left unclear how clause classes come into
the system and are distributed to their classes.

Some kind of managing facility has to exist that
keeps track of classes and the clause classes associ-
ated with them. This can be the metaclass or a sepa-
rate object dedicated to this single task. The manag-
ing facility associates clause classes with classes and
creates clause instances. The instances get adapted to
their specific classes, that is a certain root class for
the given clause class and all its subclasses.

5 Class Tree Encapsulation
The overall idea is simple: Class trees get encapsu-
lated by granting access only through class specifica-
tions. Class semantics are split up into several dis-
tinct properties each of them represented by a clause
class. Instances of these clause classes are used to
both specify the semantics of a certain class and to
build specifications for classes of interest.

However, there are at least three different ways of
using this idea (class retrieval, late creation and pat-
tern creation) each serving a different pragmatic pur-
pose. A client that uses all of them can successfully
restrict its knowledge about a design to its abstract
superclasses. Thus, the subclasses as implementa-
tions of the design are hidden and the class trees are
encapsulated. The abstract superclasses serve as the
interface classes of the class tree.

The next three subsections give concise definitions
of the three basic concepts and the fourth subsection
gives a conclusion about client specific encapsulation
of class trees.

5.1 Class Retrieval

Class retrieval of a set of classes is the process of
looking up all classes which are subclasses of a spe-
cific root class and adhere to a given specification.

A convenient way to encapsulate class retrieval is
to make each class offer a service operation that per-
forms this task. A class that returns a set of classes is
called the root class for it. Each object of a class in
the set is guaranteed to support the interface declared
by the root class. A compiler can statically rely on
this. In addition, each class matches the specification
the operation has been supplied with. For the client,
the root class takes over the role of the interface class
of the class tree.

The service operation hides how the lookup is per-
formed. The two straightforward techniques pre-
sented in this paper are either traversing the class tree
or using prebuilt tables to perform a table lookup.
Specifications for class retrieval usually denote a set
of classes instead of single class.

Clients use the set of classes the root class returns
to gain knowledge about available functionality, for
example before presenting a menu item to a user.
They can use it to decide on how to proceed further.

5.2 Late Creation

Late creation of an object is the process of creating
an instance of a class by naming only an abstract
superclass of that class and giving a specification.

Late creation can be offered as another service
operation of each class. It accepts a specification and
returns an object. The object (or null, if no object was
created) conforms to the interface defined by the root
class and provides the specified properties. Again, a
compiler can statically rely on the interface.

It usually is implemented by looking up the actual
class for the new object in a table made for the speci-
fication type. These tables can be prebuilt, for ex-
ample for all specifications that consist of a single
clause only. Since there is a possibly large number of
different specifications, one has to make a choice in
the beginning and create further tables on demand.

If such a clause denotes a class unambiguously,
the table can be built easily. It is calculated using the
inverse mapping from class to unambiguous identifi-
cation from the clause instance for that class. If the
specification is ambiguous, an entry in the table re-

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

veals the set of equivalent classes with respect to the
given specification. Then, further information is
needed. For example, the client may specify, whether
it is interested in the most general or most specialized
class. This can be done by imposing different strate-
gies or function closures on the class tree traversal
[GHJV95, Küh95] for a depth or breadth first tra-
versal.

However, no general solution to resolve ambigu-
ous specifications exists and the client should make
no more assumptions than what it has specified.

5.3 Pattern Creation

Pattern creation is a special case of late creation for
which the specification is based on clauses that refer
to the current computing context.

In object-oriented systems very often not only a
single class but a number of collaborating classes are
subclassed. The collaborating classes implement a
new variant of an abstract design. They take advan-
tage of being subclassed in concert by directly refer-
ring to the other classes’ interfaces. Thus, objects of
these classes can only be used together. This depend-
ency is secretly introduced behind an abstract design.
It is not visible to clients of the abstract superclasses.
This has to be taken into account, if a new object of a
class of the abstract design is to be created using late
creation. Thus, the specification has to refer to the
objects, that is the current computing context, the
new object has to fit.

A clause refers to the current computing context
if it is built on behalf of objects of that context, for
example by referencing the objects’ classes. Refer-
ring to the computing context lets a clause carry data
about class dependencies based on a current object
constellation. For example, GraphResizer-
Clause instances refer to the class of the graphical
object the new resizer has to fit. This can be matched
easily against the internal clauses of a resizer class.
Only the correct resizer class responds positively.

A table can be built using the inverse mapping
from graphical object class to resizer class. This table
can then be indexed with the class reference (or its id
or symbol) from the clause. The lookup returns re-

turns the denoted resizer class dependent on the
graphical object class in the clause.

Clauses that carry such dependency data are
called dependency clauses. They are needed to in-
stantiate an abstract design using only its abstract
superclasses. Usually the first object of an abstract
design is created using regular late creation and then
the other objects are created depending on this first
one using pattern creation. This is a bottom up proc-
ess that ensures the instantiation of a correct imple-
mentation of a design. Finally, it is possible to selec-
tively instantiate parts of an abstract design. This is
important, because most designs interact with other
designs only partially.

Thus, the general specification for a new object
that has to fit a given object constellation is a con-
junction of dependency clauses. Each clause identi-
fies the class of an already existing object and its role
which the new object has to match.

5.4 Clients and Encapsulation

Each of the three presented concepts makes a differ-
ent contribution to encapsulate implementations of
potentially any abstract design. Using all three con-
cepts together, no creation and selection process has
to know more about the intended classes and their
instances than the (possibly abstract) interface the
client chooses to work with.

It has to be stressed that class tree encapsulation
is always done from a client’s perspective. For differ-
ent clients different subtrees of the overall class tree
become encapsulated. For the general algorithm of
object activation and passivation the relevant classes
are Object or Persistent . All other classes are
hidden behind them. For GraphEditor the classes
GraphObject and GraphResizer are relevant
and all subclasses are hidden behind them, too. For
each graphical resizer class a specific graphical ob-
ject class is relevant the interface of which it knows
in detail.

Thus, no overall class tree encapsulation is
achieved (which wouldn’t make sense anyway) but
always a client specific one.

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

6 Impacts and Discussion
At least three areas worth of discussing can be iden-
tified: The implementation techniques, the applicabil-
ity of the techniques and the impact and consequences
of class tree encapsulation.

6.1 Implementation Techniques

Metaobject protocols have been well justified for
dynamically typed languages [Att93, KAR+93,
KRB91]. They are used in many application frame-
works for statically typed languages [CIRM93,
GOP90, LVC89, WG94], because language provided
features [Mey92, Str94] are often not sufficient.
Ways of doing this in C++ are shown in [BKS92,
Gro93, IL90, PWJ92].

The downside of an explicit metalevel architecture
is some memory and management overhead. The
approach proposed here increases this drawback,
because memory consumption goes up due to the
clauses held by each class. It depends on the type of
application and its environment whether this is a
problem. Today, this shouldn’t be a severe problem
with most applications.

Class retrieval and late creation use up more time
than simple factory methods. If a class tree traversal
is involved, it should carefully be analyzed whether
performance problems might result. If a table lookup
is sufficient, only constant time is consumed.

The described metalevel architecture integrates
easily with current application frameworks, at least
those mentioned above. Class retrieval and late crea-
tion will then be available for every class. Clauses
and specifications are type checked because they are
object-oriented right from the beginning. It is possible
to introduce new explicit semantics to a class tree at
any time as long as the classes provide sufficient data
to derive that semantics. Tool support for specifying
semantics can make any new clause class possible.

6.2 Basic Framework Applicability

Class retrieval and late creation can be applied in
basic framework design. It depends on the speed

requirements and memory limits whether it is feasible
and sensible. In our C++ and Smalltalk frameworks
[RZ95, RS95], we implemented class retrieval as a
class tree traversal and late creation for specifications
consisting of a single IdClause instance as a table
lookup.

Class retrieval was never applied in time critical
parts of our interactive systems. The memory over-
head for representing class semantics as a set of
clause instances is fixed and can be calculated in
advance. It didn’t lead to problems for us.

Late creation was used to pervasively replace
factory methods. Late creation of an object uses up
more time than a factory method call, however, the
delay is constant and could be neglected for most of
the situations we had to deal with.

Facilities for retrieving the data for class proper-
ties have to be introduced. This paper proposed the
simple technique of providing class properties
through simple access operations of a class. Clause
classes are designed using these operations. Not
having to specialize factory methods that were re-
placed by late creation makes up for the additional
effort of writing these access operations. The class
property access operations may be reused by new
clause classes while factory methods serve only a
single pupose. Moreover, the access operations pro-
vide default semantics and needn’t be specialized by
every new class. Thus, compared to factory methods,
class retrieval and late creation reduce coding effort
in the long run.

6.3 Class Tree Encapsulation

The most relevant problem of the approach is also
one of its biggest strengths. The configuration of a
system has now to be specified on a metalevel, for
example a makefile. Classes of encapsulated class
trees have to be linked explicitly, because they are no
longer statically referenced by client code. Otherwise
they will not be included in the resulting executable.
Careful attention has to be paid in order not to forget
relevant classes.

However, it is much better to specify systems on a
metalevel as opposed to writing code that causes

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

classes to be linked. This avoids system variants
maintenance problems. In the long run it can be
imagined that variants are specified solely on a tool
or makefile level which both draw on a common pool
of available classes. This is already a reality with the
applications we work with: It is specified in a make-
file which tools, materials and mediators are to be
linked. Thus, we easily create different system vari-
ants be it for restricted use, full use or system main-
tenance.

The main driving principle behind the three con-
cepts and the metalevel architecture is the notion of
encapsulation and information hiding. Though the
well known benefits apply, the situation is more
complicated. Different clients need different knowl-
edge about interfaces. The notion of client specific
class tree encapsulation expresses this. Each client’s
knowledge about interfaces is restricted to those in-
terfaces it finally chooses to work with. The three
concepts of class retrieval, late creation and pattern
creation hide the selection and creation process of
objects. They successfully restrict a client’s knowl-
edge of an object’s interface to the minimum interface
possible and sensible.

The concepts ease configuration of system vari-
ants and evolution of class trees. They enhance in-
formation hiding and thus intellectual manageability.
They reduce the learning effort needed to understand
a framework because details like class names and
class tree structure become less important. User can
concentrate on the relevant abstraction they are inter-
ested in.

7 Related Work
Several aspects of the work presented can be found in
related works. Coplien uses exemplar based pro-
gramming as an alternative to classes (generic
autonomous exemplar idiom [Cop92]) and supplies
them with make operations to create objects of hidden
subclasses. This achieves class hiding as described in
chapter 2.

Gamma et al. use factory methods, abstract fac-
tories, builders and prototypes [GHJV95] to separate

the creation processes from the clients that initiate
them. Factory methods are used to create the correct
objects of a dependent class, abstract factories bundle
factory methods for a specific system and prototypes
serve just like exemplars as a substitute for classes.
Builders are objects that perform the creation of
complex structures like compound documents. A
builder has an abstract interface that decouples the
client from the internal complexity of the structure to
be built.

Chambers introduces Predicate Classes [Cha93]
as a new linguistic concept for programming lan-
guages. Predicate classes are ordinary classes that
have a predicate associated with it. Every object that
fulfills the predicate automatically becomes an in-
stance of that predicate class. Thus, method dispatch
can be based on the state of an object. The pro-
gramming language has to offer dynamic reconfigu-
ration of class hierarchies and must be capable of
initiating this task itself.

Lieberherr et al. generate programs from specifi-
cations based on propagation patterns and class dic-
tionary graphs (adaptive programming [LSX94,
LX94]). An adaptive program consists of a number
of propagation patterns that specify constraints on
class relationships. To generate an actual program,
the propagation patterns are customized by class
graphs which set up a class structure conforming to
the pattern constraints. Thus, an adaptive program
denotes a family of programs which are constrained
by the propagation patterns. Lieberherr et al. rely on
a CASE system.

General approaches to distributed environments
like CORBA [OMG91, OMG92] work with interface
definitions for objects to be returned from a request.
Thus, interface definition languages [IDL94] and
object request brokers are needed. In addition, adap-
tors between dynamically specified interfaces and
their implementations have to be invented.

8 Outlook
Currently the two most important open issues are tool
support for configuring system variants and means

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

for embedding dynamically linked libraries. A de-
scription for class dependencies has to be introduced,
for example based on [HHG90, Sha94, AG94] or
parts of [SDK+95, GAO94], and supported by a
tool. The tool eventually has to generate a list of
classes to be delivered either statically linked or as a
dynamically linked library.

Compared to object request brokers and interface
definition languages the concepts proposed in this
paper are quite simple. However, they can be inte-
grated with current application frameworks and don’t
require a major overhead in order to do so. This easy
integration with current metaobject protocols makes
the concepts usable now and might eventually make
them into a basic technique for framework design.
The experiences with using the techniques in our
frameworks are very promising: Once they were in-
troduced, everyone wanted to use them and did so
successfully. We hope to give an experience report on
the wide variety of applications of class tree encapsu-
lation in the near future.

Acknowledgments
I wish to thank Ralph Johnson and Heinz Züllighoven
who both reviewed the paper and helped me define its
scope in a way suitable for OOPSLA.

I would like to thank Walter Bischofberger,
Bradley Edelman, Kai-Uwe Mätzel, Thomas Kofler,
Peter von Savigny, Wolf Siberski and the anonymous
reviewers for their supporting and critical but always
helpful comments on the paper.

Bibliography
AG94 Robert Allen and David Garlan.
“Formalizing Architectural Connection.” ICSE-16,
Conference Proceedings. Los Alamitos, California:
IEEE Computer Society Press, 1994. 71-80.

Att93 Giuseppe Attardi. “Metaobject Pro-
gramming in CLOS.” Object-Oriented Program-
ming: The CLOS Perspective. Edited by Andreas
Paepcke. Cambrigde, Massachusetts: MIT Press,
1993. 119-131.

BKS92 Frank Buschmann, Konrad Kiefer and
Michael Stal. “A Runtime Type Information System
For C++.” Tools-7, Conference Proceedings. Edited
by Georg Heeg, Boris Magnusson and Bertrand
Meyer. New York, London: Prentice-Hall, 1992.
265-274.

Cha93 Craig Chambers. “Predicate Classes.”
ECOOP ’93, LNCS 707, Conference Proceedings.
Berlin, Heidelberg: Springer-Verlag, 1993. 268-296.

CIRM93 Roy H. Campbell, Nayeem Islam, David
Raila and Peter Madany. “Designing and Implement-
ing Choices: An Object-Oriented System in C++.”
Communications of the ACM 36, 9 (September
1993): 117-126.

Cop92 James O. Coplien. Advanced C++:
Programming Styles and Idioms. Reading, Massa-
chusetts: Addison-Wesley, 1992.

GAO94 David Garlan, Robert Allen and John
Ockerbloom. “Exploiting Style in Architectural De-
sign Environments.” SIGSOFT ’94, Software Engi-
neering Notes 19, 5 (December 1994): 175-188.

GHJV93 Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides. “Design Patterns: Ab-
straction and Reuse of Object-Oriented Design.”
ECOOP ’93, LNCS 707, Conference Proceedings,
1993. 406-431.

GHJV95 Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Read-
ing, Massachusetts: Addison-Wesley, 1995.

GOP90 Keith E. Gorlen, Sanford M. Orlow and
Perry S. Plexiko. Data Abstraction and Object-
Oriented Programming in C++. John Wiley & Sons
Ltd., 1990.

Gro93 Mark Grossman. “Object I/O and Run-
time Type Information via Automatic Code Genera-
tion in C++.” Journal of Object-Oriented Pro-
gramming 6, 4 (July/August 1993): 34-42.

HHG90 Richard Helm, Ian M. Holland and Di-
payan Gangopadhyay. “Contracts: Specifying Behav-
ioral Compositions in Object-Oriented Systems.”

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

OOPSLA ’90, ACM SIGPLAN Notices 25, 10
(October 1990): 169-180.

IDL94 Interface Definition Language Work-
shop, ACM SIGPLAN Notices 29, 8 (August 1994).

IL90 John A. Interrante and Mark A. Linton.
“Run-Time Access to Type Information in C++.”
USENIX, Conference Proceedings 1990. 233-240.

KAR+93 Gregor Kiczales, J. Michael Ashley,
Luis H. Rodriguez Jr., Amin Vahdat and Daniel G.
Bobrow. “Metaobject Protocols: Why We Want
Them and What Else They Can Do.” Object-
Oriented Programming: The CLOS Perspective.
Edited by Andreas Paepcke. Cambridge, Massachu-
setts: MIT Press, 1993. 101-118.

KRB91 Gregor Kiczales, Jim des Rivières and
Daniel G. Bobrow. The Art of the Metaobject Proto-
col. Cambridge, Massachusetts: The MIT Press,
1991.

Küh95 Thomas Kühne. “Parameterization Ver-
sus Inheritance.” TOOLS-15, Conference Proceed-
ings. Edited by Christine Mingins and Bertrand
Meyer. New York, London: Prentice-Hall, 1995.
235-245.

Lis88 Barbara Liskov. “Data Abstraction and
Hierarchy.” OOPSLA ’87 (Addendum), ACM SIG-
PLAN Notices 23, 5 (Mai 1988): 17-34.

LS94 Victor B. Lortz and Kang G. Shin.
“Combining Contracts and Exemplar-Based Pro-
gramming for Class Hiding and Customization.”
OOPSLA ’94, ACM SIGPLAN Notices 29, 10
(October 1994): 453-467.

LSX94 Karl J. Lieberherr, Ignacio Silva-Lepe
and Cun Xiao. “Adaptive Object-Oriented Pro-
gramming.” Communications of the ACM 37, 5
(May 1994): 94-101.

LVC89 Mark A. Linton, John M. Vlissides and
Paul R. Calder. “Composing User Interfaces with
InterViews.” IEEE Computer 22, 2 (February 1989):
8-22.

LW93 Barbara Liskov and Jeannette Wing. “A
New Definition of the Subtype Relation.” ECOOP

’93, LNCS 707, Conference Proceedings. Berlin,
Heidelberg: Springer-Verlag, 1993. 118-141.

LX94 Karl J. Lieberherr and Cun Xiao.
“Customizing Adaptive Software to Object-Oriented
Software Using Grammars.” International Journal
of Foundations of Computer Science 5, 2 (1994):
179-208.

Mey91 Bertrand Meyer. “Design by Contract.”
Advances in Object-Oriented Software Engineering.
Edited by Dino Mandrioli und Bertrand Meyer. New
York, London: Prentice-Hall, 1991. 1-50.

Mey92 Bertrand Meyer. Eiffel. The Language.
New York, London: Prentice-Hall, 1992.

OMG91 Object Management Group. The Com-
mon Object Request Broker: Architecture and
Specification. Revision 1.1 (OMG Document
91.12.1), 1991.

OMG92 Object Management Group. Object
Management and Architecture Guide. 2nd Edition
(OMG Document 92.11.1), 1992.

PWJ92 Peter-Alexander Pauw, Ronald Werring
and Angelique Jansen. “An Operational Metadata
System for C++.” Tools-8, Conference Proceedings.
Edited by Raimund Ege, Madhu Singh and Bertrand
Meyer. New York, London: Prentice-Hall, 1992.
215-223.

RBP+91 James Rumbaugh, Michael Blaha, Wil-
liam Premerlani, Frederick Eddy and William Lo-
rensen. Object-Oriented Modeling and Design. Lon-
don: Prentice-Hall, 1991.

Rum95 James Rumbaugh. “OMT: The Object
Model.” Journal of Object-Oriented Programming
7, 8 (January 1995): 21-27.

RS95 Dirk Riehle and Martin Schnyder.
“Design and Implementation of a Smalltalk Applica-
tion Framework for the Tools and Materials Meta-
phor.” UBILAB Technical Report No. 95.6.1. In
preparation.

RZ95 Dirk Riehle and Heinz Züllighoven. “A
Pattern Language for Tool Construction and Integra-
tion Based on the Tools and Materials Metaphor.”
Pattern Languages of Program Design. Edited by

Dirk Riehle. “How and Why to Encapsulate Class Trees.” OOPSLA ’95, Conference Proceedings.

James O. Coplien and Douglas C. Schmidt. Reading,
Massachusetts: Addison-Wesley, 1995. 9-42.

SDK+95 Mary Shaw, Robert DeLine, Daniel V.
Klein, Theodore L. Ross, David M.Young and Greg-
ory Zelesnik. “Abstractions for Software Architec-
ture and Tools to Support Them.” IEEE Transac-
tions on Software Engineering. To appear.

Sha94 Mary Shaw. “Procedure Calls Are the
Assembly Language of Software Interconnection:
Connectors Deserve First-Class Status.” Proceedings
of the Workshop on Studies of Software Design.
New York: Springer-Verlag, 1994.

Str94 Bjarne Stroustrup. The Design and
Evolution of C++. Reading, Massachusetts: Addi-
son-Wesley, 1994.

WG94 André Weinand and Erich Gamma.
“ET++ – a Portable, Homogenous Class Library and
Application Framework.” Computer Science Re-
search at UBILAB. Edited by Walter R. Bischof-
berger and Hans-Peter Frei. Konstanz: Univer-
sitätsverlag Konstanz, 1994. 66-92.

