
Published in Pattern Languages of Program Design 3. Edited by Robert C. Martin, Dirk Riehle
and Frank Buschmann. Addison-Wesley, 1998. Chapter 17, page 293-312.

Serializer

Dirk Riehle, Wolf Siberski, Dirk Bäumer, Daniel Megert and Heinz Züllighoven

ABSTRACT

The Serializer pattern lets you efficiently stream objects into data structures of your choice as
well as create objects from such data structures. The Serializer pattern can be used whenever ob-
jects are written to or read from flat files, relational database tables, network transport buffers,
etc.

The Reader part of the pattern builds an object structure by reading a data structure from a back-
end. The Writer part of the pattern writes an existing object structure as a data structure to a
backend. Both parts together constitute the Serializer pattern.

The pattern can be found in more or less pure versions in probably every framework that pro-
vides support for object streaming. The CORBA externalization service and the JAVA Serializa-
tion package are a clean applications of the pattern. However, it develops its full potential only in
the context of different streaming backends.

INTENT

Read arbitrarily complex object structures from and write them to varying data structure based
backends. The Serializer pattern lets you efficiently store and retrieve objects from different
backends, such as flat files, relational databases and RPC buffers.

ALSO KNOWN AS

Atomizer, Streamer, Reader/Writer

MOTIVATION

Suppose you are modeling a Customer class in the banking domain. The Customer class will
have several attributes, for example a name and a list of accounts. You will want to make Cus-
tomer and Account objects persistent, for example by storing them in a relational database.
Sometimes you need to exchange customer data with other branch offices. This can be done by
writing the objects to RPC buffers for transport via a network connection. Or, bank representa-
tives visit the customer at home, using a notebook computer when doing so. They need access to
the customer data. Therefore the objects have to be saved to a file on the notebook. Thus, every
major application needs to read objects from and write them to a varying number of backends
with different representation formats.



2

Application classes should have no knowledge about the external representation format which is
used to represent their instances. Otherwise, introducing a new representation format or changing
an old one would require to change almost every class in the whole system. These classes should
contain no representation specific code for reading or writing their instances. It is much better to
delegate the task of reading and writing to external and exchangeable classes which do the read-
ing and writing, respectively.

To seperate reponsibilities for reading and writing we introduce a Reader/Writer class pair for
each backend. These classes decouple the application classes them from the backends. The
Reader protocol is used for reading (activating) object structures, and the Writer protocol is used
for writing (passivating) them. Different Reader/Writer pairs represent different external repre-
sentation formats and interact with different reading and writing backends. Figure 1 shows an
example of a Reader/Writer class hierarchy.

5HODWLRQDO'%:ULWHU5SF%XIIHU:ULWHU6WUHDP:ULWHU

5HDGHU�SURWRFRO

5HDGHU

5SF%XIIHU5HDGHU 5HODWLRQDO'%5HDGHU6WUHDP5HDGHU

:ULWHU�SURWRFRO

:ULWHU

Figure 1: Example of a Reader/Writer class hierarchy

In turn, the Reader and Writer classes shouldn’t know the concrete application classes, because
they would have to be modified whenever an application class is added or changed. To achieve
this, the application classes have to provide a generic access interface to their internal state.

Therefore, every application class provides an interface called Serializable. This interface con-
sists of two methods, one for reading and one for writing the object. The readFrom method ac-
cepts a Reader object for reading, and the writeTo method accepts a Writer for writing. Sub-
classes of Serializable implement this interface by accepting Reader/Writer objects and by read-
ing from or writing their attributes to them. In Figure 2 the pattern is applied to the example.

ZULWH7R�:ULWHU�

UHDG)URP�5HDGHU�

6HULDOL]DEOH

&XVWRPHU $FFRXQW

5HDGHU :ULWHU

Figure 2: the Serializable interface

The Reader and Writer protocols offer every serializable object the possibility to read or write
primitive value types, including object references. A Reader or a Writer can follow object refer-
ences to traverse a whole object structure and to either create it rsp. write it to a specific backend.



3

Applying the Serializer pattern lets you traverse object structures on an attribute level, and while
doing so convert the object structure into any required external representation format. Applica-
tion objects are freed from having to care about how to read from or write to external media so
that it becomes easy to introduce new or change old input and output formats and backends.

APPLICABILITY

Use the Serializer if

•� you have to convert arbitrarily complex object structures into different data representation
formats and back, and you don’t want to put knowledge about the representation formats into
the objects to be read or written.

�Don’t use the Serializer, if

•� the application objects have to provide backend specific information to the format conversion
algorithm.

�The pattern cannot only be used to store objects in any kind of data stream like ordinary files or
debugging dumps; it is also useful for storing them in relational databases or data buffers that are
used for transporting objects between processes. An Serializer can also be used as a Copier to
copy an object structure; it is even useful for building an object browser like the Smalltalk In-
spector which displays objects at runtime.

�

�STRUCTURE

�

&RQFUHWH:ULWHU$

&OLHQW

UHDG)URP�5HDGHU�
ZULWH7R�:ULWHU�

6HULDOL]DEOH

&RQFUHWH(OHPHQW$ &RQFUHWH(OHPHQW%

ZULWH,QW�LQW�
ZULWH6WULQJ�VWULQJ�
���
ZULWH9DOXH7\SH1�9DOXH7\SH1�
ZULWH2EMHFW�6HULDOL]DEOH�
ZULWH5RRW�6HULDOL]DEOH�

:ULWHU

&RQFUHWH5HDGHU$

&RQFUHWH:ULWHU%

&RQFUHWH5HDGHU%

LQW�UHDG,QW��
VWULQJ�UHDG6WULQJ��
���
9DOXH7\SH1�UHDG9DOXH7\SH1��
6HULDOL]DEOH�UHDG2EMHFW��
6HULDOL]DEOH�UHDG5RRW��

5HDGHU

%DFNHQG%%DFNHQG$



4

�Figure 3: Structure of the Serializer pattern

�

�PARTICIPANTS

•� Reader/Writer

−� declare a Reader protocol for reading objects and a Writer protocol for writing objects.
These protocols consist of read respectively write operations for every value type, includ-
ing object references.

−� hides the Backend and external representation format from serializable objects.

•� ConcreteReader/ConcreteWriter (StreamReader/Writer, RpcBufferReader/Writer)

−� implement the Reader and Writer protocols for a particular Backend and external repre-
sentation format.

•� Serializable

−� is an interface class which defines operations to accept a Reader for reading and a Writer
for writing. These operations have to provide the attributes to the Reader/Writer.

−� provides a Create operation which takes a class id and creates an object of the denoted
class.

•� ConcreteElement (Customer, Account)

−� implements the Serializable interface to read or write its attributes.

•� Backend (Stream, RpcBuffer)

−� is a particular backend like a stream or a relational database frontend.

−� is used by the ConcreteReader/ConcreteWriter which shields it from the application
classes.

−� the backend has not to be encapsulated in a class; its interface may also be procedural.

COLLABORATIONS

A Reader rsp. Writer collaborates with the Serializable protocol class to read rsp. write serializ-
able objects. The Reader/Writer hands itself over to the serializable objects, while the serializable
objects make use of its protocol to read rsp. write their attributes. The reading and writing proc-
esses are nearly identical. They result in a recursive back and forth interplay between serializable
objects and the Reader/Writer.

During the writing process, each object writes its attributes by calling the appropriate write
method of the Writer. The Writer handles attributes that are object references according to some
predefined specification (see discussion on streaming policies in the implementation section). If
the referenced objects are to be written, the Writer asks them to write them onto itself.

When reading an object the Reader first creates a new instance of the appropriate class and then
hands itself over to it. The new serializable object reads its attributes by calling the respective



5

read methods for each attribute. During the reading process the Reader creates all objects which
are requested by already existing objects.

A ConcreteReader rsp. ConcreteWriter reads from rsp. writes to its backend using a backend spe-
cific interface which need not be object-oriented.

Figure 4 is an interaction diagram for a sample collaboration. The client calls writeRoot with
aCustomer which has the attributes name and accounts. The dotted lines indicate that aConcre-
teWriter remains active while calling writeTo. The diagram only shows the start of the write pro-
cess:

D%DFNHQG D&RQFUHWH:ULWHU D&XVWRPHU

ZULWH7R�WKLV�

ZULWH6WULQJ�QDPH�
ZULWH�VWULQJ

ZULWH2EMHFW�DFFRXQWV�

ZULWH5RRW�D&XVWRPHU�

DQ$FFRXQW/LVW

ZULWH7R�WKLV�

ZULWH�REMHFW�LG�DQG�W\SH�LG

ZULWH�REMHFW�UHIHUHQFH

D&OLHQW

ZULWH�REMHFW�LG�DQG�W\SH�LG

Figure 4: interaction diagram for a sample write process

CONSEQUENCES

Take the following consequences into account, when considering to apply the Serializer pattern:

1.� Using the Serializer makes adding new data representation formats for objects easy. Object
structures can be written to and read from new and unforeseen backends simply by introduc-
ing a new Reader/Writer pair. Often, it suffices to parameterize some standard Reader/Writer
implementation with a storage backend, thereby easing the introduction of new data repre-
sentation formats even more.

2.� Using the Serializer takes knowledge about external data representation formats out of the
objects to be streamed. By using the Reader/Writer interface of simple read and write opera-
tions, the objects are effectively shielded from any data format of their external representa-
tion.

3.� Using the Serializer pattern requires new classes to support the Serializable protocol.
Classes of streamable objects must implement the Serializable protocol. This requires reading
and writing every relevant object attribute.

4.� Using the Serializer patterns weakens encapsulation. It is at the heart of the Serializer pattern
to allow the access to an object’s internal state. This weakens encapsulation to some extent. It
is very inconvenient, however, to break encapsulation by misusing the Serializable protocol.

5.� The set of value types supported by the Readers/Writers has to be considered well. At first
glance, one might consider supporting only object references and the programming lan-
guage’s “built-in” value types like integer, float, etc. However, for some types it is appropri-



6

ate to treat them like built-in value types (for example, string or date types), and to add spe-
cial methods to the Reader and Writer interface to handle them. This may be the case with
general as well as domain specific value types.

IMPLEMENTATION

Consider the following issues when implementing a Serializer:

•� Deciding between deep and non-deep streaming. Deep streaming an object structure means
streaming every referenced object. This is typically done when reading from a file or writing
to it. With other kinds of backends, for example databases, deep streaming is unsuitable so
that you will choose a different streaming policy, for example a policy which streams only
changed objects. Implementing non-deep streaming is more complex than implementing deep
streaming. But deep streaming is potentially very costly since it might require transporting
large amounts of data due to the highly interconnected nature of object structures.

•� Identifying objects. Objects usually reference other objects. In a passive data format, these ref-
erences must be represented by an unambiguous identification. Such an identification, an id,
only has to be unambiguous within the type’s name space, not necessarily for all types’ name
spaces, since the object’s type is always stored together with its id. There are several possi-
bilities to implement object identification schemes:

−� Using a global counter. Many implementations use a global counter to create object ids.
When an object is created it receives the counter value as an id with the counter being in-
cremented. To avoid running out of ids eventually, most implementations we know of use
8 byte counters.

−� Relying on externally generated ids. Very often, specific backends offer id generation
mechanisms, for example database systems. If possible, these facilities should be used.

•� Writing additional information. The signatures of the Reader’s and Writer’s operations de-
pend on the purposes you are using object streaming for. The minimal information that must
be written is the value to be streamed. But then reading depends on the sequence of the written
attributes. Therefore, consider writing more information about the attributes:

−� Writing the attribute name. It is advantageous also to write the attribute name. This makes
the read operations independent of the sequence of the written object attributes. Some
backends need the attribute name to write rsp. read the attributes correctly. For example, a
relational database backend might have to interpret the data it receives in terms of the col-
umn names into which they are written. Then, it is necessary to associate attribute names
with the corresponding column names.

−� Distinguishing between transient and persistent data. You might be tempted to write out
and read back only the primary attributes of the object and omit the functionally dependent
ones, because they can be reconstructed from the primary ones. Then, however, you are fo-
cusing the application of this pattern on object streaming only, and miss possible other uses
like object browsers. You might therefore consider writing out all attributes and enhancing
the (read and) write operations with a tag indicating whether an attribute is transient or per-
sistent.



7

−� Writing a version number. Each object might write a version number identifying the ver-
sion of its implementation. This provides some (though minimalistic) support for evolu-
tion. Conversion functions in the Reader or the streamed object’s implementation itself
might then provide the functionality for backward compatibility.

•� Providing an object manager. When writing or reading, you need to keep track of objects
which have already been read or written in order to avoid an endless loop when dealing with
circular references. A possible solution is to introduce an object manager used for managing
object tables that provide the needed information. The manager object can be asked whether
an object of a certain id has already been read or written. It can also map object ids to object
references.

�The object manager keeps track of objects on a global, system-wide level. It is to be distin-
guished from the object management facilities of an Serializer which has to keep track of the
objects read or written within a specific reading or writing process.

•� Implementing the reading and writing operations using a metaobject protocol. If your runtime
system provides a metaobject protocol which allows access to an object’s attributes, it is pos-
sible to implement the read and write operations once, directly in Serializable. The disadvan-
tage is that you usually can’t mark attributes as transient or persistent anymore. An interesting
exception is Java, which provides both field names and transient or persistent flags, so that the
readFrom and writeTo operations can fully be written on a meta-level.

•� Using a data buffer as a backend. Sometimes, you will want to decouple concrete services
representing backends from the Serializer. You can do so by making the Serializer work on a
generic data buffer instead of a specific backend. This allows for a generic implementation of
large parts of the Serializer which simply stream the objects into the data buffer. The client
can then provide specific backends with that buffer. Doing so, you effectively decouple the
Serializer from a specific backend and allow its generic implementation. Furthermore, it be-
comes easy to define context boundaries of when a read or write begins and ends.

•� Providing additional initialization operations. If some additional object initialization has to
be carried out after reading an object (e.g. initialization of non-persistent attributes), consider
providing an additional initialization operation. It is not advisable to do this while still reading
the attributes for the same reasons you separate initialization procedures from the basic object
creation procedure: Objects at this early point of initialization may only be half baked, and
initializing functionally dependent attributes from a potentially inconsistent object state might
cause unforeseen and unwanted side-effects.

•� Folding the read and write method pairs into single methods. It is possible to halve the coding
effort for serializable classes by folding the Serializable protocol into a single operation, for
example named attributes(). The Reader and Writer protocol is also folded into one interface
Serializer with the operations serializeInt, serializeString, etc. The attributes() implementa-
tions call the serializeXXX methods with references to their attributes as parameters (instead
of their actual values).

�If the Serializer object is actually a concrete reader, its serialize methods will use the reference
to replace the value of the referenced attribute. If the Serializer object is a writer, it will use
the reference to retrieve and write the attribute. The client chooses whether to read or to write
by giving the serializable object to the respective Serializer. This approach works particularly
well in C++.



8

•� Creating objects during the read process. During the read process you have to be able to cre-
ate a new object, given its class id. For this task you should use a creational pattern, for exam-
ple a Factory Method. The simplest solution is to make Serializable provide a static function
(in C++) or a class method (in Smalltalk) which receives the class name or class id which it
maps on a class object or prototype using a dictionary or similar kind of mapping. A flexible
pattern for this purpose is the “Product Trader” pattern described in [Bäumer+96].

•� Taking care of diamond inheritance structures. When writing an object, care has to be taken
that attributes are not written twice due to a diamond in the inheritance structure. Either the
Writer must check that no attributes are written twice, or the object itself must flag the attrib-
utes as already been written. The last approach prevents that reaching a specific class’ writeTo
operation for a second time causes its attributes being written again. The same applies to the
reading process.

•� Aborting the reading or writing process. If an unsalvageable failure occurs, the system should
abort the reading or writing process and rollback all changes that have been carried out. Con-
ceptually, the reading or writing of an object structure should be a transaction, that is it pro-
vides its own execution context and only upon commit makes these changes visible to the en-
vironment. Implementing fail-safe object space transactions in a generic way is hard, though.
Therefore, a specialized transaction manager for reading and writing should keep track of the
objects and their embedding into the environment and be able to perform a rollback in case an
exception occurs.

•� Treating class attributes separately. Class attributes should be read only at program or image
initialization time, and written only at program finalization time. Instead of reading or writing
them in the readFrom and writeTo operations, their initialization and finalization should be
handled separately.

�The following sections have only to be considered when doing incomplete streaming:

•� Selecting a streaming policy. Object structures can become arbitrarily deep; when doing non-
deep streaming you must make a decision to which extent you want to stream object struc-
tures. We distinguish between the following streaming policies [Bischofberger+96]:

−� Shallow streaming. An object is streamed only to the first level of attributes. No references
within the object are followed. This solution should be applied if nothing can be said about
streaming requirements except that it can be very costly to ask for more than a shallow ob-
ject.

−� Fixed level streaming. Streaming is performed to a predefined depth. Starting with a root
object, every reference is followed until a nesting count reaches a predefined value. This is
a general solution applicable if deep streaming is too costly but there is no information
about the object structure which would make it possible to specify a better strategy.

−� Partial streaming. In this case, streaming is performed according to some predefined graph
specification which defines which object references are to be followed and which are to be
left dangling, for example as proxies. This is the best solution since it lets developers map
domain specific requirements on streaming behavior. An interesting treatment of this has
been presented by [Lopes96] who calls partial streaming “adaptive streaming,” which un-
fortunately interferes with the naming of our next policy.

−� Adaptive streaming. Adaptive streaming is a specialization of partial streaming. Instead of
deriving a streaming specification from the business requirements, adaptive streaming de-



9

rives a streaming specification dynamically from the actual client usage of an object struc-
ture. Starting out with shallow streaming, a streaming service starts to gather data about the
frequency of streaming and dereferencing requests, and derives a dynamic partial streaming
specification from this.

�When writing an object structure, it makes sense only to write those objects which have
actually changed since they last have been read or written. This is particularly appropriate
when writing to databases. You might have to provide “dirty flags” or some other tech-
nique to indicate that an object has changed.

•� Handling dangling references. When partially reading an object structure not all references
will be resolved. The unresolved references are left dangling. There are two major ways of
dealing with these dangling references: Proxies and replacing or modifying the reference in-
terpretation mechanism of the runtime system.

−� Using proxies. A proxy is a substitute for a real object which is not fully available for some
reason, see [GOF95]. A dangling reference can be realized as a proxy. It can be an object
of the correct type but without initialized attributes, or it can be an object of a special proxy
type. Both variants must be capable of catching operation calls and dispatching them to
some reading facility for the real object before executing the real operation.

−� Changing the reference interpretation mechanism. You might replace or modify the run-
time system or the compiler to interpret references in an enhanced way. Such an enhanced
interpretation might include checking a flag in the reference value which indicates whether
the reference points to a valid main memory object or not. If not, the value could further be
interpreted to provide a database id or the like for the real object in question. Such a modi-
fication is almost always system dependent. It should be done only if proxies are consid-
ered unsuitable for reasons of performance.

SAMPLE CODE

We will now review the example from the motivation section. First, we will describe the writing
process, and then the reading process.

The general class Serializable offers an operation for accepting a Reader for reading, an
operation for accepting a Writer for writing, and an operation for creating instances of its sub-
classes known only by the class name at runtime. The class interface looks like this:
class Serializable
{
public:
  virtual void readFrom(Reader*) =0;
  virtual void writeTo(Writer*) const =0;
  static Serializable* newByName(char*);
};

Classes to be streamed via a Reader or Writer must inherit from Serializable, as discussed.
This holds true for the Customer and List<Account> classes from the motivation section
as well. Their interfaces might look as follows:
class Customer : public Serializable
{
public:
  virtual void readFrom(Reader*);
  virtual void writeTo(Writer*) const;



10

  ...
private:
    // attributes
  string name;
  List<Account*>* accounts;
};

class Account : public Serializable
{
  ... // like Customer
};

template<class T> List : public Serializable
{
public:
  virtual void readFrom(Reader*);
  virtual void writeTo(Writer*) const;
  ...
private:
    // implementation state
  long count;
  T* list; // C++ native array implementation
};

Both classes define an implementation state that must be considered for reading and writing. To
do so, both classes overwrite the readFrom and writeTo operations. These operations make
use of the Writer interface which looks like:
class Writer
{
public:
    // primitive "built-in" value types
  virtual void writeChar(const string& name, char value) =0;
  virtual void writeInt(const string& name, int value) =0;
  ...
    // non-primitive value types
  virtual void writeString(const string& name, const string& value) =0;
  ...
    // references to objects
  virtual void writeObject(const string& name, const Serializable*) =0;
  virtual void writeRoot(const Serializable*) =0;
  ...
};

This interface offers operations to write all value types considered to be important, including all
built-in value types like int and float, non-primitive value types like string, and finally object ref-
erences. The operation writeTo of class Customer and List might now be implemented
like this:
void Customer::writeTo(Writer* writer) const
{
    // simply write the two attributes
  writer->writeString("name", name);
  writer->writeObject("accounts", accounts);
}

template<class T> void List::writeTo(Writer* writer) const
{
    // first write the count attribute
  writer->writeLong("count", count);
    // then write the array as a succession of object references
  for(long i=0; i<count; i++) {
    write->writeObject("list[" + string(i) + "]", list[i]);
  }
}



11

The Writer can write all value types directly to a backend, using whatever physical representation
seems suitable and fits the backend. Of interest, however, is the handling of object references.
Writing them is simple (they just have to be converted into an id), but since they represent ob-
jects the Writer must decide whether to write the full object and not just the reference and must
keep track of which objects already have been streamed.

Let’s pick a concrete example: An ASCIIStreamWriter uses the standard iostream classes
as the output medium for the basic value type representations. In addition, it uses ASCII based
formatting to make the output both human and machine readable. Its interface looks like the
Writer interface defined above, it only introduces some additional operations for receiving the
input and output streams. We assume a deep streaming policy.

ASCIIStreamWriter uses an instance variable named buffer to hold the ostream in-
stance to which the output data is written. Writing a primitive value like a long integer is simple:
void ASCIIStreamWriter::writeLong(const string& name, long value)
{
  buffer << "long " << name << " = " << value << endl;
}

Writing a general reference of type Serializable is slightly more complicated. First, the
Writer writes the object id to the buffer. Then it has to check whether the referenced object is al-
ready written. If not, the Writer pushes it on a stack and writes it later. wasHandled is a list
which collects all objects that have already been written out, and toHandle is the stack which
receives all objects that still must be written. Both are attributes of the Writer.
void ASCIIStreamWriter::writeObject(const string& name, Object* object)
{
    // first write id for object reference
  buffer << typeid(object) << " " << name << " = ";
  buffer << object->objectId() << endl;
    // check whether object was already handled
  if (!wasHandled->contains(object))
    toHandle->push(object);
}

The writing process is started by a client with a call to writeRoot with the object serving as
the root as parameter. writeRoot contains the main loop which is continued until all refer-
enced objects are written. During one iteration in the main loop, a single object’s attributes are
received by the Writer and written to the backend.
void ASCIIStreamWriter::writeRoot(Serializable* root)
{
  wasHandled->clear();
  toHandle->clear();

    // push first object to be written
  toHandle->push(root);

    // loop until all referenced objects are written
  while (!toHandle->isEmpty())
  {
      // pop this iteration’s object
    Serializable* object = toHandle->pop();
      // write type id and object id
    buffer << typeid(object) << " " << object->objectId() << " = " << endl;
    buffer << "{" << endl;
      // note object as already handled
    wasHandled->append(object);
      // finally ask object to write its attributes into the Writer
    object->writeTo(this);
      // some more delimiters and pretty printing



12

    buffer << "}" << endl << endl;
  }
}

We have seen all relevant aspects of the writing process now: A client first instantiates or reuses
an existing Writer and hands over the root object of the object structure to be written using
writeRoot. writeRoot calls writeTo on this root object and waits to receive the object’s
attributes. Some of these attributes are primitive value types which directly can be written to the
output buffer. Some of these attributes are references to other objects. After writing the id repre-
senting the referenced object, the Writer pushes the reference on a stack to write the object later.

The reading process is very similar to the writing process. All serializable classes implement the
readFrom operation to read their attributes from a Reader. The classes Customer and List
implement it like this:
void Customer::readFrom(Reader* reader)
{
  name = reader->readString("name");
  accounts = (List<Account*>*) reader->readObject("accounts");
}

template<class T> void List::readFrom(Reader* reader)
{
  count = reader->readLong("count");

  list = new T[count];
  for(long i=0; i<count; i++) {
    list[i] = (Account*) reader->readObject("list[" + string(i) + "]");
  }
}

The Reader protocol simply mirrors the Writer protocol. It consists of a long succession of read
operations for all value types:
class Reader
{
public:
    // primitive "built-in" value types
  virtual char readChar() =0;
  virtual int readInt() =0;
  ...
    // non-primitive value types
  virtual string readString() =0;
  ...
    // references to objects
  virtual Object* readObject() =0;
  virtual Object* readRoot() =0;
  ...
}

While writing a Writer can write attribute after attribute to the output buffer; a Reader, however,
has to read all attributes in advance, because the object to be instantiated might ask for its attrib-
utes in a different order in which they were written. We could require serializable objects to al-
ways ask for their attributes in the same order in which they were written, but we prefer to avoid
such ordering dependencies.

Attributes are maintained in a dictionary which maps the attribute names on pairs of strings rep-
resenting the attribute’s type and value. The readChar operation look like this:
char ASCIIStreamReader::readChar(const string& name)
{
    // retrieve attribute with key name, convert it to char and return it
  return attributes->at(name)->value().asChar();
}



13

readObject first checks whether the object indicated by the id already exists, and, if not, cre-
ates it using the type id. All the relevant attribute information about an object, their values and
types, is maintained in a dictionary named attributes. attributes is built in initAt-
tributes which is called by readRoot of ASCIIStreamReader every time before the
call to readFrom.
Serializable* ASCIIStreamReader::readObject(const char* name)
{
  Serializable* object = null;
    // interpret value as long (representing ids)
  long id = attributes->at(name)->value().asLong();

    // check whether object was already instantiated
  if (!wasHandled->containsKey(id))
  {
    string type = attributes->at(key)->type();
      // create new object of given type to be returned
    object = Serializable::newByName(type);
      // note as already handled
    wasHandled->putAt(id, object);
  }
    // return old object
  else object = wasHandled->at(id);

  return object;
}

In analogy to writeRoot, readRoot implements the main reading loop. It is called by a cli-
ent to initiate the reading process. The loop continues until the end of the buffer is reached.
readRoot returns the first object which was read:
Serializable* ASCIIStreamReader::readRoot()
{
  Serializable* root = null;
  wasHandled->clear();
  toHandle->clear();

    // loop until entire stream is parsed
  while (!buffer.eof())
  {
    Serializable* object = null;
    char type[32], equal[4], bracket[4], tmp[4];
    unsigned long id;

      // read type id and object id
    buffer >> type >> id >> equal >> bracket;
      // was object already created (but not initialized)?
    if (!wasHandled->containsKey(id))
    {
        // create object using type information
      object = Serializable::newByName(type);
        // note as being created
      wasHandled->putAt(id, object);
        // the first object is the root object
      if (!root) root = object;
    }
      // get existing object
    else object = wasHandled->at(id);

      // read the object’s attributes en block
    initAttributes(object->getAttributeCount());
      // tell object to retrieve its attributes
    object->readFrom(this);
    buffer >> bracket >> tmp;
  }



14

  return root;
}

initAttributes simply reads a predefined number of values and puts them in the attrib-
utes dictionary:
void ASCIIStreamReader::initAttributes(int no)
{
  attributes->clear();

  for ( int i = 0; i < no; i++ ) {
    char type[32], name[32], equal[4], value[32];
      // read attribute type id, attribute name and value
    buffer >> type >> name >> equal >> value;
      // put type/value pair into attributes dictionary
    attributes->putAt(name, StringPair(type, value));
  }
}

Now we have all pieces at hand to understand the reading process: A main loop reads from a
buffer until it reaches its end. This is identical to a deep streaming policy, assuming that the
buffer contains a complete object graph. readRoot creates the object to be read, then reads all
its attributes using initAttributes, and at last calls readFrom on the serializable object.
The object requests its attributes from the Reader which satisfies these requests by returning the
values from the attributes dictionary. Attributes which are references are instantiated as
shallow objects, that is without initializing their attributes. This is delayed until the object itself
turns up in the stream.

KNOWN USES

Object streaming is supported by almost every mature (application) framework such as ET++,
InterViews/Unidraw, and Smalltalk. Let’s take a look at ET++’s implementation of object
streaming [Weinand+94]. It is realized by an interplay between Object and Stream of which two
subclasses IStream and OStream exist (for reading and writing respectively). The main difference
between the ET++ implementation and Serializer implementations is that ET++ only handles one
output format for object streaming. That’s why it doesn’t bother to take this out of class Object as
the Serializer pattern suggests. However, for meta-level access to an object's data members, a dif-
ferent operation called AccessMembers is defined. The object streaming functionality could have
been based on a rewritten and enhanced AccessMembers operation.

Although strictly speaking the CORBA externalization service [OMG96] is only a specification,
it uses the same interface and separation of responsibilities as the Serializer pattern: A stream
service (either Stream or StreamIO) takes over the combined role of Reader and Writer, and a
Streamable interface represents our protocol class Serializable. An object or a set of objects is
streamed between a begin_context() and an end_context() call to Stream. All references within
these bracketing calls are resolved without duplicating objects. When creating an object struc-
ture, the stream service uses the readonly attribute Key of every Streamable object: It serves as
the specification to retrieve a new object from a Factory looked up via a FactoryFinder. CORBA
distinguishes between write_object() and write_graph() operations: write_object() only writes the
referenced object, while write_graph() writes out a full object graph specified via the CORBA
relationship service.



15

Riggs et al. describe "Object Pickling in the Java System" which corresponds to the Serializer
pattern [Riggs+96]. The interface Serializable, in contrast to our definition, has no operations but
serves as an indicator of serializability to a Reader/Writer only. Concrete objects may implement
operations writeObject and readObject if they wish to specialized the default implementation.
The Serializer is separated into two distinct interfaces, a Reader interface (ObjectInput) and a
Writer interface (ObjectOutput). Standard implementations for ObjectInput and ObjectOutput are
the Java library classes ObjectInputStream and ObjectOutputStream. Writing an object always
performs a deep streaming, only via specials is it possible to do a shallow streaming as required,
for example, for remote procedure calls. Clients can put more than one object graph into an Ob-
jectOutputStream; they indicate the end of a section by calling flush() on the OutputStream.
Riggs et al. provide a meta-information based implementation of the readFrom and writeTo op-
era-tions. This works well, because the Java runtime meta-information not only allows access to
an object’s field but also provides information whether a field is to be considered as transient or
persistent, and what the field’s name is.

The Gebos series of banking projects developed at RWG in Stuttgart, Germany, uses the Serial-
izer pattern to read and write arbitrary object structures from flat files and relational databases.
Different formats for flat files like electronic logs, debugging dumps, etc. are supported [Bäu-
mer+96].

The Geo project pursued at Ubilab uses the Serializer for network transport of objects, copying,
object inspection, and file streaming. A number of different Reader and Writer classes implement
the Reader and Writer interfaces [Riehle+97].

The Beyond-Sniff project pursued at Ubilab is a distributed software development environment
which uses the Serializer pattern to store and transfer arbitrarily large data structures, for example
for retrieval results from a symbol table to a client’s programming environment instantiation
[Mätzel+96].

Parrington uses the Serializer pattern in the context of the distributed programming system Ar-
juna to marshal and unmarshal the parameters of remote procedure calls [Parrington95].

RELATED PATTERNS

The newByName operation of the protocol class Serializable is best implemented by using the
Product Trader pattern [Bäumer+97]. Alternatively, as suggested in [GOF95], page 111, it can be
implemented using Factory Methods. The streaming policy used to decide whether to acti-
vate/passivate a certain object reference can be implemented as a Strategy [GOF95].

ACKNOWLEDGMENTS

Our Shepherd John Vlissides provided valuable feedback and helped us improve the paper sig-
nificantly. We received very helpful comments from the members of the writers workshop “Dis-
tribution” at PLOP ’96. Ingrid Dörre and Frank Schneider shared their experience in implement-
ing an Serializer subsystem with us and reviewed drafts of the paper. Erich Gamma gave us im-
portant hints, especially on the type safety advantage of the Reader/Writer pair compared to a
single class Serializer which contains both protocols.



16

BIBLIOGRAPHY

[Bäumer+96] Dirk Bäumer, Rolf Knoll, Guido Gryczan and Heinz Züllighoven. “Large Scale
Object-Oriented Software-Development in a Banking Environment—An Experience Report.”
LNCS 1098, ECOOP ’96, Conference Proceedings, pp. 73-91.

[Bäumer+97] Dirk Bäumer and Dirk Riehle. “Product Trader ”. This volume.

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. (1995). Design Pat-
terns: Elements of Reusable Design. Reading, Massachusetts: Addison-Wesley.

[Lopes96] Cristina Videira Lopes. “Adaptive Parameter Passing.” LNCS 1049, ISOTAS ’96,
Conference Proceedings. Edited by Kokichi Futatsugi and Satoshi Matsuoka. Berlin, Heidelberg:
Springer-Verlag, 1996, pp. 118-136.

[Mätzel+96] Kai-Uwe Mätzel and Walter R. Bischofberger. “The Any Framework: A Pragmatic
Approach to Flexibility.” COOTS ’96, Conference Proceedings, pp. 179-190.

[OMG96] Object Management Group, Inc. CORBAservices: Common Object Services Specifica-
tion, volume 1. Revised edition March 31, 1995. Updated March 28, 1996.

[Parrington95] Graham D. Parrington. “A Stub Generation System for C++.” Computing Systems
8, 2 (Spring 1995), pp. 135-167.

[Riggs+96] Roger Riggs, Jim Waldo, Ann Wolrath and Krishna Bharat. “Pickling State in the
Java System.” COOTS-2, Conference Proceedings, pp. 241-250.

[Riehle+97] Dirk Riehle, Roger Brudermann and Walter Bischofberger. Request Handling in
Geo. Ubilab Technical Report 97.5.1. Zurich, Switzerland: Union Bank of Switzerland, 1997.

[Weinand+94] André Weinand and Erich Gamma. “ET++ — a Portable, Homogenous Class Li-
brary and Application Framework.” Computer Science Research at Ubilab. Edited by Walter R.
Bischofberger and Hans-Peter Frei. Konstanz: Universitätsverlag Konstanz, 1994, pp. 66-92.

Copyright 1998 by the authors.

Dirk Riehle works for Ubilab, the information technology research laboratory of Union Bank of
Switzerland. He can be reached at Ubilab, Union Bank of Switzerland, Bahnhofstrasse 45, 8021
Zürich, Switzerland. He welcomes e-mail at Dirk.Riehle@ubs.com or riehle@acm.org.

Wolf Siberski works for RWG GmbH, Germany. He can be reached at RWG GmbH, Räpplen-
straße 17, 70191 Stuttgart, Germany. He welcomes e-mail at daasb@rwg.de.

Dirk Bäumer works for RWG GmbH, Germany. He can be reached at RWG GmbH, Räpplen-
straße 17, 70191 Stuttgart, Germany. He welcomes e-mail at Dirk_Baeumer@rwg.e-mail.com or
baeumer@informatik.uni-hamburg.de.

Daniel Megert works at the information technology department for the corporate customer busi-
ness of Union Bank of Switzerland. He can be reached at Union Bank of Switzerland, Bahnhof-



17

strasse 45, 8021 Zürich, Switzerland. He welcomes e-mail at Daniel.Megert@ubs.com or Dan-
iel.Megert@acm.org.

Heinz Züllighoven is a professor of computer science at University of Hamburg. He can be
reached at Software Engineering Group, University of Hamburg, Vogt-Kölln-Strasse 30, 22527
Hamburg, Germany. He welcomes e-mail at Heinz.Zuellighoven@informatik.uni-hamburg.de.


