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Abstract
Software design patterns are the core abstractions from successful recurring problem solutions in software design.
Composite design patterns are the core abstractions from successful recurring frameworks. A composite design pattern
is a pattern that is best described as the composition of further patterns the integration of which shows a synergy that
makes the composition more than just the sum of its parts. This paper presents examples of composite patterns, dis-
cusses a role-based analysis and composition technique, and demonstrates that composite patterns extend the pattern
idea from single problem solutions to object-oriented frameworks.

1 Introduction
A developer versed in software design patterns might explain the
Model-View-Controller paradigm (MVC, [KP88, Ree96a]) for
designing interactive software systems like this: “(a) MVC helps
you design applications with graphical user interfaces. Its core are
three collaborating objects: a Model object which represents an
instance of a domain concept, a View object which realizes a
specific user interface representation of the Model, and a Con-
troller object which handles user input in order to work with the
Model. (b) These objects interact according to the Observer,
Strategy and Composite pattern: A View observes a Model—thus
the View is an Observer of the Model which is its Subject. A
View does not handle user input but leaves this to the Control-
ler—thus the Controller is a Strategy for handling user input.
Moreover, Views can have Subviews which represent smaller
parts of the user interface and which can have Subviews them-
selves—thus the View is a Component in the Composite pattern
and different Views can be either Leafs or Composites.”

From MVC’s overall point of view (described in (a) above), the
use of each of the design patterns (described in (b) above) is of a
tactical nature: every pattern is used to solve a specific problem at
hand. Taken together and directed towards the goal of designing a
reusable and flexible user interface architecture, the patterns
achieve a synergy which constitutes a whole that is larger than
just the sum of some patterns. MVC is a composite design pattern.

A composite pattern is first of all a pattern: It is a design theme
that keeps recurring in specific contexts as a solution to a prob-
lem. It is a composite pattern, because it can best be explained as
the composition of some other patterns. However, a composite
pattern goes beyond a mere composition: It captures the synergy
which arises from the integration of several patterns into an over-
all composition structure. A composition of some patterns turns

into a composite pattern, if and only if (a) a relevant synergy be-
tween the pattern interactions arises, and (b) this synergy can be
observed as a recurring design theme.

This paper discusses the notion of composite pattern. It introduces
a notation based on roles to better describe and compose patterns.
It presents an analysis and composition technique to better cope
with the complexity of composite patterns. The notation and tech-
nique cover patterns based on object collaborations which con-
stitute the majority of patterns known today. Eventually, the paper
compares composite patterns with object-oriented frameworks and
pattern languages.

Composite patterns and frameworks are orthogonal concepts.
However, analyzing and understanding successful recurring
frameworks as composite patterns helps us better capture the core
abstraction behind such frameworks, much like atomic design
patterns help us capture the solution to a recurring design prob-
lem. Not every composite pattern constitutes a framework, but
behind every successful recurring framework there must be a core
abstraction that can be captured as a pattern, usually a composite
pattern. As such, composite patterns hold the same promise as
atomic patterns, but on a much larger scale.

Section 2 examines the notion of composite pattern more closely,
presents a first example, and lists further ones. Section 3 intro-
duces role diagrams and composition constraints as a means for
describing patterns. This prepares the way to section 4, which
presents an elaborate example of a composite pattern. Doing so, it
introduces an analysis and composition technique based on the
concepts of prototypical pattern application and role relationship
matrix. In section 5, the definition of composite pattern is com-
pared with frameworks and pattern languages. Section 6 discusses
related work and section 7 presents some final conclusions.

2 Composite Patterns
This section examines and defines the notion of composite design
pattern and sets up a proper terminology. An example further
illustrates the idea of composite pattern. This prepares the way to
the analysis and composition technique of the following sections.
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2.1 Definition

A composite design pattern is first of all a design pattern: It is the
abstraction from a concrete recurring solution that solves a prob-
lem in a certain context [GOF95, POSA96, RZ96]. A pattern is a
composite pattern, if it can be best explained as the composition
of further atomic or composite patterns. An atomic pattern is a
pattern that, on a given level of abstraction, cannot sensibly be
described as the composition of further patterns.

In a composite pattern, the constituting patterns integrate with
each other to achieve a synergy that gives the composite pattern
its own identity beyond being just the sum of some patterns. This
distinguishes a composite pattern from an arbitrary pattern com-
position, which may be a suitable solution for a specific design
problem, but which does not recur as a pattern of its own.

Usually, a pattern can be described as the abstraction from a re-
curring form that consists of several elements which interact with
each other and their context in specific ways [RZ96]. A composite
pattern’s synergy emerges from the interaction of different ele-
ments from different patterns. This interaction can take on many
shapes, depending on the kind of pattern. Generally speaking,
each pattern element interacts with further elements from other
patterns. If these non-trivial element interactions keep recurring,
they constitute the synergy that motivates the composite pattern.

2.2 Active Bridge

As a first example, consider the Active Bridge pattern [Rie97a].
This pattern represents a recurring type of frameworks which is
used to connect an application to underlying event-driven re-
sources like window-system widgets or inter-process communica-
tion channels. This pattern has been used in ET++ [WG95], Geo
(our current project), and the newly redesigned VisualWorks win-
dow-system framework presented at OOPSLA ’96 [Yel96].

Figure 1 presents the role diagram of the pattern. It shows the five
object roles Application, Abstraction, Implementor, Resource and
Factory. A role defines a view on an object within a given object
collaboration. The use of roles will be discussed in more detail in

the next section. For the Active Bridge pattern it suffices to know
that each of the aforementioned roles maps directly on a single
object in a pattern instantiation.

The Active Bridge pattern can best be understood as the compo-
sition of the five patterns Bridge, Proxy, Observer, Abstract Fac-
tory and Factory Method, all of which are described in [GOF95].

• At the heart of the Active Bridge pattern is the Bridge pat-
tern which serves to decouple an Abstraction from a number
of different Implementors. For instance, a Window abstrac-
tion can be implemented based on a lower-level Implemen-
tor interface.

• Each Implementor acts as a Proxy for an underlying re-
source like a window-system native window widget [Yel96].
The Proxy is implemented based on the resource and acts as
an object-oriented placeholder for it.

• Communication flows in both directions. An application
directly uses an Abstraction which uses an Implementor
which uses a Resource. A Resource may cause events due to
user interactions or incoming communication requests. It
forwards them to the Implementor. The Implementor in-
forms the Abstraction using the Observer pattern, thus be-
coming the Subject of the Abstraction which is its Observer.

• The configuration of such a subsystem requires some
thought and is therefore delegated to an Abstract Factory.
The Factory creates the Implementor instances and thereby
ensures that the chosen implementations can coexist, meet
the applications’ needs, and work with the available re-
sources.

• The creation operations of the Abstract Factory are imple-
mented using Factory Methods. Factory Methods are the
best choice because the Factory is chosen once at startup
time and there is no need to reconfigure it.

Each of the five patterns defines a set of roles for its elements.
Every object in an instance of the Active Bridge pattern plays
several roles from the constituting patterns. Figure 2 groups the
roles from the atomic patterns into composite roles. Composite

Factory

Resource
abstraction

implementor

ImplementorAbstraction

application side operating system sideClient

an arrow represents
a use-relationship

a rounded rectangle
represents a role

Figure 1: Role diagram of the Active Bridge pattern

ClientAB      = { ClientB }
AbstractionAB = { AbstractionB, ClientP, ObserverO, ClientAF }
ImplementorAB = { ImplementorB, ProxyP, SubjectO, ProductAF, ProductFM }
FactoryAB     = { FactoryAF, ClientFM, CreatorFM }
ResourceAB    = { SubjectP }

Figure 2: Composite roles of the Active Bridge pattern
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roles are the roles of the composite pattern; they are a composi-
tion of some atomic roles. The index of a role name in figure 2
indicates the pattern in which it is defined. AB stands for Active
Bridge, B for Bridge, P for Proxy, O for Observer, AF for Ab-
stract Factory, and FM for Factory Method.

Active Bridge is a fairly simple composite pattern, because the
patterns it consists of are fairly simple. The constituting patterns’
roles can be grouped easily to form the composite roles.

It is easy now to prove that Active Bridge is a composite pattern
according to the definition of section 2.1: Active Bridge can be
observed to recur; it is described in [WG95, Yel96] and has been
used in many other frameworks. As has just been demonstrated, it
can be explained well as a composition of some patterns. Finally,
the composite roles defined in figure 2 are a visible expression of
the synergy achieved by the composite pattern. This synergy
stems from integrating different roles from different constituting
patterns in a composite role played by a single object at runtime.

2.3 Further examples

The Active Bridge pattern is described in some more depth in
[Rie97a], where further composite patterns can be found (Bu-
reaucracy, Model-View-Controller and Role Object). The Bu-
reaucracy pattern will be discussed in section 4. The Role pattern
serves to adapt a core abstraction to different contexts by means
of role objects, as it is ubiquitously needed in many complex do-
mains. Further composite patterns can be abstracted from recur-
ring frameworks for such topics as product specification, resource
allocation or order management.

Another concrete example of a such a framework-level composite
pattern is the user-defined product specification pattern, the ab-
straction from product specification frameworks. A product
specification framework lets users dynamically define banking or
insurance products (like loans, financial instruments, or insurance
contracts). Because the number of different products is large,
constantly changes and must be adapted (to some extent) for every
customer, a naive approach like modeling each product as a class
of its own is doomed to fail.

Instead, product specification frameworks repeatedly compose
Type Object [JW97], Composite [GOF95], and Property [Rie97a]
to define the structure of self-describing products. The dynamics
of the resulting object structure can be described best using the
Interpreter pattern (viewing products as attribute grammars).
While the composite pattern behind this framework type has not
yet been worked out in detail, an excellent pattern-based descrip-
tion of it is presented by Johnson and Oakes in [JO97].

Framework-level composite patterns hold a high promise of ex-
plaining recurring frameworks in such a way that experience can
be more easily communicated and transferred from one domain to
related domains and reused across programming language
boundaries. A high leverage can be expected from uncovering,
describing and communicating these composite business patterns.

3 Pattern Description
If all composite patterns were as simple as the Active Bridge pat-
tern, this paper would probably end here. However, many com-
posite patterns are much more complex than the introductory

pattern. To cope with this complexity, we need proper concepts,
techniques and tools to support human intuition and experience
while defining a pattern.

This section presents a new notation for describing patterns, the
role diagram notation. Role diagrams are based on Reenskaug’s
role models [Ree96a], but extend them with the notion of compo-
sition constraint [Rie96, Rie97a]. The next section discusses an
analysis and composition technique for composite patterns based
on role diagrams.

Choosing role diagrams as the primary means for describing pat-
terns ignores class inheritance based patterns for which further
techniques have to be developed. This is justified, because role
diagrams can be used more effectively than class diagrams when
dealing with patterns based on object collaborations.

3.1 Role diagrams

Almost all pattern descriptions today use class diagrams to de-
scribe patterns [CS95, VCK96, MRB97]. The reason is that
classes have long been the primary means for modeling object-
oriented software systems. In addition, they are explicitly repre-
sented in today’s object-oriented programming languages. How-
ever, class diagrams often mix the actual problem solution in
terms of the distribution of responsibilities between objects with
efficient ways of implementing it. Role diagrams in turn are better
suited for describing object collaboration based patterns than class
diagrams, because they better focus on the actual problem solu-
tion as a set of collaborating objects.

A role diagram describes how some collaborating objects, each
one playing one or more roles, achieve a common goal. A role
represents the view some objects in the collaboration hold on
another object playing that role [Rie96, KO96]; it captures the
responsibilities of an object with respect to achieving the purpose
defined by the role diagram. An object can play several roles at
once, and the same role can be played by several objects. An ob-
ject collaboration usually serves several purposes—it can be
viewed as a set of overlapping role diagrams. Thus, role diagrams
can be composed easily, which makes them attractive for de-
scribing composite patterns.

Figure 3 shows the role diagram of the Composite pattern. The
Composite pattern is defined in [GOF95]; it serves to describe
and implement hierarchical object structures (trees). The notion of
“composite patterns” as discussed in this paper does not have
anything to do with “the Composite pattern” which is written with
a capital “C.” Composite patterns define a category of patterns,
while the Composite pattern is a concrete pattern.

The Composite pattern as understood here defines the roles Node,
NodeClient, Parent, Child, Root and RootClient. This is a reinter-
pretation of the Gang-of-four definition, extended with the notion
of root objects. Figure 3 shows three pair-wise interactions: a
NodeClient makes use of a Node, a Parent has several Child ob-
jects, and a RootClient makes use of the Root object. These inter-
actions are linked together by composition constraints: An object
playing the Root role also always plays the Parent role which also
always plays the Node role. On an implementation level, this type
of composition constraints frequently maps well on class inheri-
tance.

Role diagrams are more abstract than class diagrams. Role dia-
grams can be mapped on several class diagrams. The use of class
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inheritance often introduces important implementation twists that
help handle the instantiated pattern more easily. [Rie96] discusses
the resulting levels of abstraction, and shows how the general role
diagram of the Observer pattern depicted in figure 6 maps on at
least three different class diagrams that make it more concrete.

3.2 Role relationships

Figure 3 does not fully show how the roles can be mapped on
objects. The mapping of roles on objects may be subject to com-
position constraints. A composition constraint is a binary rela-
tionship between roles which may take on one of three different
values: Two roles may be played by the same object, or they must
be played by the same object, or they must not be played by the
same object.

The set of composition constraints can be expressed as a role
relationship matrix which relates every role with every other role.
Figure 4 shows the role relationship matrix of the Composite pat-
tern. It uses the three aforementioned different values for a matrix
entry (A, B) which defines a relationship between the two roles.
These three values are:

• An object playing role A also always plays role B in the
same collaboration. Thus role A implies role B. This is de-
picted by a black rectangle for the matrix entry (A, B).

• An object playing role A never plays role B in the same
collaboration. Thus, role A prohibits role B. This is depicted
by a white rectangle for the matrix entry (A, B).

• Two roles A and B arbitrarily mix and match (“don’t care”).
Thus, role A may or may not go with Role B; nothing can be
said. This is depicted by a gray rectangle for the matrix entry
(A, B).

In the Composite pattern, two examples of “A implies B” are the
pairs (Parent, Node) and (Child, Node) which specify that an
object playing the Parent or Child role also always plays the Node
role. The relationship is not symmetric: One cannot conclude that
an object playing the Node role also plays the Parent or Child
role. An example of “A prohibits B” is the pair (Child, Root)
which specifies that a Child object never plays the Root role.

The role relationship matrix depicted in figure 4 is a visual repre-
sentation of a propositional calculus formula. Part of the descrip-
tion of an object’s behavior within a collaboration is the set of
roles it may play, and the constraints which define valid sets can
be described well and in simple terms using propositional logic.

The meaning of the matrix entries is as follows: The “implies”
relationship between two roles corresponds to a logical implica-
tion between two roles “(A⇒B),” the “prohibits” relationship
between two roles corresponds to “¬(A∧B)” (due to its symme-
try) and the “don’t care” relationship corresponds to “true.” The

children

Root

Child
parent

Node

Parent

RootClient

NodeClient

a diamond indicates
ownership (aggregation)

a bullet indicates a
cardinality of n

a black arrow represents
a use-relationship

a gray arrow represents
a composition constraint

a rounded rectangle
represents a role

Figure 3: Role diagram of the Composite pattern

Root

Parent

Node

NodeClient

Child

RootClient

A doesn’t care about B

A prohibits B

A implies B

Figure 4: Role relationship matrix of the Composite pattern
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overall matrix represents a conjunction of its entries. An object’s
role set is valid within a collaboration if the binding of the vari-
ables makes the formula evaluate to true.

3.3 Further examples

Figures 5 to 7 show three further patterns needed for this paper.

• The Mediator pattern (figure 5) serves to decouple, manage
and integrate several Colleague objects by means of a coor-
dinating Mediator.

• The Observer pattern (figure 6) serves to decouple Observer
objects from a Subject object while maintaining state de-
pendencies. The maintenance is achieved by using events for
inter-object communication.

• The Chain of Responsibility pattern (figure 7) serves to de-
fine an object chain along which requests are passed until
they are handled. Thus, by configuring the chain, the receiver
of a request can be defined dynamically.

These examples are taken from [Rie97a] where more atomic and
composite patterns are described using role diagrams. Some of
these descriptions are simpler than the original from [GOF95],
and some are more complex. In particular, descriptions of patterns
with a recursive structure like Composite or Chain of Responsi-
bility are more complex, because satisfying the boundary condi-
tions increases the number of roles and composition constraints.

4 Analysis and Composition
The previous section has introduced role diagrams as a means of
describing patterns. This section shows how complex object
structures can be analyzed and how composite patterns can be

derived and defined. The key concepts are the set of prototypical
pattern applications and the role relationship matrix. I use the
Bureaucracy pattern [Rie97b] as an example of a complex com-
posite pattern.

4.1 Prototypical pattern application

Patterns grow from experience. Thus, every effort to devise a new
pattern should be based on previously known pattern instantia-
tions, that is concrete designs in which the patterns have been
applied (albeit implicitly). The documentation of existing systems
is a good starting point. However, concrete designs and imple-
mentations often vary greatly, even if a common core indicates a
potential composite pattern.

In a Bureaucracy pattern instantiation, the objects form a hierar-
chy, with each parent-node object being a manager to its child-
node objects. This management and integration task conforms to
the Mediator pattern. Child objects, like subordinates in a bureau-
cratic hierarchy, inform their parent about state changes, for ex-
ample when they have finished a task they had to fulfill. This is
done according to the Observer pattern. Moreover, if an external
client requests a task from an object in the hierarchy which ex-
ceeds this object’s context information, the object forwards the
request up the hierarchy until it can be satisfied by a node that has
enough context information to do so. This interaction is handled
according to the Chain of Responsibility pattern. Finally, the hier-
archical structure itself is defined using the Composite pattern. All
four patterns, Composite, Mediator, Observer and Chain of Re-
sponsibility can be found in [GOF95].

A first step to abstract from concrete designs is to devise a set of
prototypical pattern applications, that is a set of object collabora-
tion structures in which all relevant roles and role interactions are
present. These applications can then serve as the primary object of

Colleague
colleagues

mediator
Mediator

a shadow indicates that the Colleague role
may be played by a number of different
objects with different role protocols

Figure 5: Role diagram of the Mediator pattern

SubjectobserverObserver

Figure 6: Role diagram of the Observer pattern

predecessor

Tail

Predecessor
successor

Handler

Successor

TailClient

HandlerClient

Figure 7: Role diagram of the Chain of Responsibility pattern
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study. Frequently, a single prototypical pattern application is suf-
ficient to capture all relevant configurations. If not, further appli-
cations must be devised until all relevant configurations are cov-
ered. This forms the set of prototypical pattern applications.

Figure 8 shows a prototypical pattern application of the Bureauc-
racy pattern, as it can be found in graphical editors like HotDraw
[Joh92], ET++Draw [WG95], and Sane [RZ95]. It shows a hier-
archy of visual objects which represent the elements of a drawing.
They are displayed in an editor window, ready for being manipu-
lated by the user. The visual objects communicate with each other
in order to keep the hierarchy in a consistent state as well as to
perform user initiated actions. This section’s analysis of the col-
laboration structure will show that its driving force is a recurring
design theme which can be captured as the Bureaucracy pattern.

4.2 Involved patterns

An analysis of the prototypical pattern application identifies four
patterns: Composite, Mediator, Chain of Responsibility, and Ob-
server.

• The Composite pattern is used to define the hierarchy. Every
visual object in the hierarchy plays the role of Node, some
play the role of Parent (aFigure, aGroup), some play the role
of Child (aCircle, aGroup, aRectangle, anArrow, aTriangle),
and one plays the role of Root (aFigure). A user plays the
role of NodeClient and anApplication plays the role of
RootClient.

• The Mediator pattern is used to let a Parent in the hierarchy
manage its Child objects. The roles of Mediator in the Me-
diator pattern maps on Parent and the role of Colleague maps
on Child in this pattern. For example, aGroup plays the role
of a Mediator for aRectangle, anArrow, and aTriangle which
it coordinates to behave like a group.

• The Chain of Responsibility pattern is used to handle client
requests. Every Node is a Handler which can receive client

requests. Child objects are Predecessors which forward re-
quests up the hierarchy if they cannot handle them. If aCircle
is manipulated, for example moved, it sends an invalidate
drawing region request to its Successor. Thus, aCircle is both
a Handler and a Predecessor, and aFigure is both aNode and
a Successor as well as a Tail for the Chain.

• The Observer pattern is used to keep up with changes that
are not explicitly forwarded up the hierarchy. Every Parent in
the hierarchy is an Observer of its Child objects which are its
Subjects. If aCircle is not constrained by its Parent aFigure
to ask first before letting a user change its label, it can do so
on its own. Nevertheless, further objects, either inside or out-
side the hierarchy, might have to change accordingly, so
aCircle informs its Observers about the change.

In short, the Composite pattern defines the hierarchical structure,
the Mediator pattern shows how each hierarchy node manages its
subordinate nodes, the Chain of Responsibility pattern shows how
client requests are forwarded up the hierarchy, and the Observer
pattern shows how nodes observe their subordinate nodes in order
to readjust the hierarchy in case of unanticipated changes.

Working together, these patterns achieve a synergy that goes be-
yond their individual purposes: Their integration helps to design
hierarchical structures which can maintain their inner stability
(invariants) themselves while still allowing clients to interact with
every hierarchy level. Client requests may cause a complex con-
trol flow inside the hierarchy which it uses to readjust itself.

4.3 Role relationship matrix

Figure 9 shows how the different roles of the constituting patterns
are assigned to objects. Every role was taken and assigned to
those objects which play that role. This defines the set of all roles
an object may play in a collaboration.

Now the role relationship matrix can be derived. As defined, a
role relationship matrix specifies how the roles objects play in an

aDrawingApp

aGroup

aTriangleaRectangle

anArrow

aFigure

aCircle

user

Figure 8: A prototypical pattern application of the
Bureaucracy pattern

NodeClient,
HandlerClient

RootClient,
TailClient

Node, Child, Parent, Handler,
Successor, Predecessor, Mediator,

Colleague, Subject, Observer

Node, Child,
Handler, Predecessor,

Colleague, Subject

Node, Child,
Handler, Predecessor,

Colleague, Subject

Node, Child,
Handler, Predecessor,

Colleague, Subject

Root, Parent, Node,
Tail, Handler, Successor,

Mediator, Observer

Node, Child,
Handler, Predecessor,

Colleague, Subject

Figure 9: The roles objects in the prototypical pat-
tern application play
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object collaboration relate to each other. Its purpose here is to
describe the pattern interaction synergies and help uncover hidden
composite roles. Figure 10 shows the preliminary non-
consolidated role relationship matrix of the Bureaucracy pattern,
as derived from figure 9.

If it were not for the “implies” and “prohibits” relationship be-
tween roles, there would be no composite patterns. If it were pos-
sible to arbitrarily map roles on objects, anything would be possi-
ble but nothing could be said about pattern interaction synergies.
However, it is exactly the set of composition constraints, which
represents the synergy the composition achieves and which turns
it from an arbitrary composition into a composite pattern.

The role relationship matrix is represented visually rather than as
a large formula, because the visual presentation is more accessible
to human perception and lets us much easier recognize composite
roles and interaction synergies, as discussed now.

4.4 Pattern derivation

Analysis of the role relationship matrix reveals that several col-
umns (and rows, the matrix is symmetric with respect to this) are
equivalent. Thus, grouping equivalent columns lets us partition
the overall role set into equivalence sets, each one representing a
composite role. Why? Because if an object plays a role it always
also plays any other role from its equivalence set so that in an

instantiation of the composite pattern the roles are always played
together. Thus, they constitute the pattern’s composite roles.

Figure 11 shows the composite roles of the Bureaucracy pattern.
It is based on the roles DirectorClient, Director, Manager, Subor-
dinate, ClerkClient and Clerk, each of which represents an
equivalence set of roles from the composed patterns. The index B
stands for Bureaucracy, C for Composite, M for Mediator, CoR
for Chain of Responsibility, and O for Observer.

Figure 12 shows a consolidated role relationship matrix which is
solely based on composite roles. The redundancy of the equiva-
lence sets has been eliminated. This leaves us with a matrix in
which only the composition constraints between the composite
roles are present (for example, every Director is a Manager, which
in turns is always a Clerk—in accordance with the textbook defi-
nition of bureaucracy [Web47]).

Figure 13 shows the role diagram of the Bureaucracy pattern, as it
conforms to the role relationship matrix of figure 12. The struc-
ture is isomorphic to the Composite pattern’s structure of figure 3
and 4, but the dynamics are more elaborate. This role diagram is
the result of this section’s work.

This section has presented an analysis, composition and deriva-
tion technique for composite patterns based on object collabora-
tions. The set of prototypical pattern applications serves to ab-
stract from concrete designs. The role relationship matrix serves
to analyze the interaction of different roles from the involved

NodeC

ChildC

RootC

RootClientC

ParentC

NodeClientC

HandlerCoR

PredecessorCoR

TailCoR

TailClientCoR

SuccessorCoR

HandlerClientCoR

SubjectO

ColleagueM

MediatorM

ObserverO

Figure 10: Role relationship matrix of the Bureaucracy pattern before consolidation
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patterns. Starting with the role relationship matrix, role equivalent
sets are defined which stand for composite roles. Based on com-
posite roles, the preliminary role relationship matrix can be con-
solidated and the final role diagram can be defined.

The process demonstrated in this section is an after-the-fact ra-
tionalization [PC86]. The creative process of working out the
pattern did not proceed in the linear fashion as implied by the
steps taken in this section.

5 Comparison
This section discusses the relationship between composite pat-
terns, frameworks and pattern languages. It shows that recurring
frameworks can be abstracted into patterns and demonstrates that
composite patterns are different from pattern languages.

5.1 Frameworks

A framework is a set of classes which model and solve a specific
domain problem. Usually, this set of classes contains some ab-
stract classes which define the design of the framework and the
interaction of their instances, and some concrete classes which
provide implementations for the abstract classes [JF88, GOF95,
Lew95]. As already pointed out in [GOF95], patterns are abstrac-
tions from concrete designs and therefore are to be seen on a dif-
ferent level. In this paper I have claimed and illustrated that com-
posite design patterns are the abstractions from concrete recurring
frameworks. This point will now be clarified further.

Both patterns and frameworks can be described using class or role
diagrams [Rie96, Rie97a, Ree96a]. Both frameworks and pattern
instances can be understood well as solving a particular problem.
A framework, which keeps recurring and which solves a specific
problem, can be abstracted into a pattern. Thus, the abstraction

DirectorClientB = { RootClientC, TailClientCoR }
DirectorB       = { RootC, TailCoR }
ManagerB        = { ParentC, MediatorM, SuccessorCoR, ObserverO }
SubordinateB    = { ChildC, ColleagueM, PredecessorCoR, SubjectO }
ClerkClientB    = { NodeClientC, HandlerClientCoR }
ClerkB          = { NodeC, HandlerCoR }

Figure 11: Definition of the composite roles of the Bureaucracy pattern

Director

Manager

Clerk

ClerkClient

Subordinate

DirectorClient

Figure 12: Role relationship matrix of the Bureaucracy pattern

subordinates

Director

Subordinate
manager

Clerk

Manager

DirectorClient

ClerkClient

Figure 13: Role diagram of the Bureaucracy pattern
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from a set of similar recurring frameworks is a pattern, and the
concrete frameworks are its instances.

A framework, in which several patterns have been applied and in
which these pattern instances interact in always the same way, can
be abstracted into a composite pattern. The definition of compos-
ite pattern is pragmatic: Describing a composite pattern as the
composition of several patterns helps to explain it better and
makes clear that the way the pattern instances interact in a given
framework keeps recurring as a pattern of its own.

5.2 Pattern languages

A pattern language is a collection of patterns which refer to each
other in such a way that users can use the patterns to build soft-
ware systems in a similar way as they use natural language to
create sentences, paragraphs and books [Ale79, Cop97]. The
power of a pattern language emerges from being “generative” in
the sense that it helps users with going back and forth between
patterns, describing the pattern relationships and interactions.
Alexander has given up pattern languages [Gab94] because it did
not meet his hopes and expectations, but the software and organ-
izational patterns community discusses them as a possible means
for effectively supporting software development activities.

A pattern language offers more freedom of choice than a compos-
ite pattern. When using a pattern language, users actually traverse
paths in the language’s pattern graph, each time choosing a path
specific to the overall problem that is to be solved. With changing
problems, different paths are chosen, and different overall solu-
tions emerge. A composite pattern in turn has already defined the
one single solution space for a problem as a set of patterns that
interact in always the same recurring way. Thus, the implementa-
tion space of a composite pattern is more restricted than the one
of a pattern language.

From using a pattern language, composite patterns might emerge.
If a user of a pattern language notices that in similar problem
contexts he or she is actually traversing and applying a pattern
language using the same path over and over again, then there must
be some hidden theme, a recurring hidden agenda behind that
traversal path. This might be the beginning of the uncovering of a
new composite pattern.

6 Related Work
First of all, the work of Reenskaug on the OOram software devel-
opment methodology has to be discussed [Ree96a]. The OOram
methodology defines the concepts role model and role model
synthesis which are similar to concepts presented in this paper. A
role model serves the same purpose as a role diagram: it describes
an archetypal object collaboration in terms of the roles objects
play in the collaboration. Role model synthesis is the process of
composing several role models to yield a synthesized role model.
Thus, role model synthesis is equivalent to composing role dia-
grams and the notion of synthesized role corresponds to the no-
tion of composite role as used in this paper.

However, there are several aspects in which the work presented in
this paper is different or goes beyond his work. On the concrete
role modeling level, it introduces the notions of composition con-
straint and role relationship matrix to address issues of describing
role interactions. Reenskaug suggests to directly synthesize role

models instead of preserving the individual roles and annotating
them with composition constraints [Ree96b]. Using composition
constraints helps to keep independent roles separate while pre-
serving important information about their relationship.

On page 260pp of [Ree96a], Reenskaug shows that design pat-
terns can be described using role models. He presents a sequence
of patterns for the MVC pattern and shows how to construct soft-
ware tools from them. Effectively, he documents a framework
using patterns described as role models, in a similar vain as John-
son has already done using class diagrams [Joh92]. This is a dif-
ferent issue than what this paper tries to achieve: To understand
recurring frameworks as composite patterns, that is not to docu-
ment them (although this is an important issue), but to abstract
from them to make them reusable across notation, language and
domain boundaries.

Moreover, this paper presents means for analyzing object collabo-
ration structures with respect to involved patterns. Such analytical
means are necessary to cope with the increasing complexity as we
turn to more challenging patterns which promise increased lever-
age.

The importance of behavioral compositions has been acknowl-
edged for some time. The work of Helm et al. [HHG90] used the
notion of contract to describe the formal semantics of a behav-
ioral composition, that is a collaboration of some objects. Similar
to role diagrams and role models, the focus is on the collaboration
of some objects rather than on single objects. Two important op-
erations on contracts are discussed, refinement and inclusion, that
is specialization and composition. With some enhancements,
contracts could probably be used to formally describe design pat-
terns, and the inclusion operation could be used to define com-
posite patterns.

The implementation of collaboration-based composite pattern
instances is non-trivial, in particular if an object may dynamically
acquire and lose roles. In the simple static case, it might be ap-
propriate to use multiple inheritance to derive a class which offers
several role protocols each of which is represented by an abstract
superclass. A more elaborate approach is presented by Aksit et al.
[ABV92] who introduce composition filters which can be used to
dynamically attach and control views (roles) on an object. A com-
position filter is used to control the dispatch of incoming opera-
tion calls to an appropriate target. Making the method dispatch an
explicit target of configuration at runtime helps to compose ob-
jects and define multiple views on the resulting object conglomer-
ate. A related approach to control the dispatch of operation calls is
to use an appropriate metalevel architecture, exemplified in
[KAR+93, CM93, McA95].

The importance of describing patterns through the responsibilities
assigned to their elements has not only been emphasized by
[GOF95], but also by Buschmann et al. [POSA96] who made this
explicit by using CRC cards [WWW90] for describing patterns.
More issues of modeling with roles and implementing them are
discussed in [WJS95, GSR96, KO96].

7 Conclusions
This paper defines the notion of composite pattern and illustrates
it using one elaborate and further small examples. It demonstrates
that composite patterns can be understood to be the abstraction
from successful recurring object-oriented frameworks. To support
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this, an analysis and derivation technique is presented that helps
pattern authors work out the essence of complex composite pat-
terns.

The discussion is restricted to deal with patterns based on object
collaborations which represent the majority of software design
patterns known today. This restriction serves to introduce a more
effective description, analysis and composition technique than is
possible without.

In particular, the patterns are described using role diagrams, an
extension of Reenskaug’s role models. The most important aspect
of this extension is the definition of composition constraints
which specify the set of roles an object may, has to, or must not
play. Composition constraints can be expressed visually as a role
relationship matrix. Such a matrix supports the analysis of com-
plex object structures as needed when defining the core of a po-
tential composite pattern.

These concepts and techniques are to be seen as tools which pat-
tern authors use to attack ever more complex patterns. First
evaluations show that frameworks for such topics as user-defined
product specifications, resource allocation, and order management
share a common repeating design core. I believe that abstracting
these cores into composite patterns will help software developers
communicate more effectively about their frameworks and will
make learning from each other easier.
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