
Dirk Riehle and Thomas Gross. “Role Model Based Framework Design and Integration.” In Proceedings of the 1998 Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’98). ACM Press, 1998. Page 117-
133.

Role Model Based Framework Design and Integration

Dirk Riehle
UBS AG, Ubilab

P.O. Box, 8098 Zürich, Switzerland
++ 41 1 234 27 02, ++ 41 1 236 46 71

Dirk.Riehle@ubs.com or riehle@acm.org
http://www.ubs.com/ubilab

Thomas Gross
Departement Informatik, ETH Zürich

8092 Zürich, Switzerland
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT
Today, any large object-oriented software system is built
using frameworks. Yet, designing frameworks and defining
their interaction with clients remains a difficult task. A pri-
mary reason is that today’s dominant modeling concept, the
class, is not well suited to describe the complexity of object
collaborations as it emerges in framework design and inte-
gration. We use role modeling to overcome the problems
and limitations of class-based modeling. Using role models,
the design of a framework and its use by clients can be de-
scribed succinctly and with much better separation of con-
cerns than with classes. Using role objects, frameworks can
be integrated into use-contexts that have not been foreseen
by their original designers.

Keywords
Frameworks, design methods, design patterns

INTRODUCTION
Frameworks are a central concept of large-scale object-
oriented software development. They promise increased
productivity, shorter development times, and higher quality
of applications [9, 10, 5, 6]. Many examples show that
these goals can be reached, but even more examples show
that they can be missed easily as well [19, 31]. Obviously,
framework-based development of object-oriented systems is
not yet a mature discipline. In particular, there is no coher-
ent theory for the design of object-oriented frameworks and
their integration into different use-contexts.

A primary reason for today’s problems with designing and
integrating frameworks is the dominant use of class-based
modeling. Classes are excellent means for describing con-
cepts and abstractions from an application domain, but they
fail to adequately describe object collaboration behavior.
Work on specifying and composing object collaborations,
most prominently [14], has addressed these issues, but has
not yet provided us with concepts and methods that specifi-
cally deal with framework design and integration. All ap-
proaches we know of ignore the intermediate framework

level and directly jump from simple models to large-scale
components and systems.

When designing a framework, developers must clarify
which responsibilities an object has, on which use-contexts
these responsibilities depend, and how the object combines
the different responsibilities. They must further define the
collaborative behavior of objects, which includes the differ-
ent purposes of an object collaboration, and how they are
composed. When defining how clients may interact with a
framework, developers must clarify what a framework of-
fers to them, and how they may make use of it. This in-
cludes not only the services offered by a framework, but
also the requirements it puts on its context before it can be
used.

In this paper, we analyze the problems of class and object
collaboration complexity and their impact on framework
design and integration. We introduce a role modeling ap-
proach to describe object-oriented designs. We then focus
on how role modeling supports the design and integration
of object-oriented frameworks. We discuss how role models
address different aspects of frameworks and framework
extensions, and how role models are used to define client
interaction with frameworks.

The idea of role modeling is not new. The OOram method-
ology developed by Reenskaug et al. [24] presents a general
approach to modeling objects and object collaborations
using roles and role models. However, OOram’s focus is on
objects; it does not provide modeling concepts that specifi-
cally address and support framework design and integra-
tion. In this paper, we build on the role modeling founda-
tion developed by prior research and explore framework
design and integration based on role modeling.

Section 2 describes a pertinent set of framework design and
integration problems that are addressed in this paper. Sec-
tion 3 describes the role modeling metamodel, which forms
the foundation of our approach. Section 4 and Section 5
describe framework design and integration concepts, re-
spectively, based on the role modeling approach. Section 6
analyzes different aspects of the approach and discusses
how far they help overcome the problems described in Sec-
tion 2. Section 7 describes related work and Section 8 con-
cludes the paper.

Copyright (c) by the Association for Computing Machinery, Inc. Permission to make digital or
hard copies of part or all of this work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or commercial advantage and that new
copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept. ACM Inc., fax +1 (212)
869-0481, or <permissions@acm.org>.

2

PROBLEMS IN FRAMEWORK DESIGN AND
INTEGRATION
Framework design involves definition and description of
the static and the dynamic aspects of a framework. A
framework designer or a client who aims to understand the
structure and dynamics of a framework (described by a set
of abstract classes) must address a number of issues:

• Class complexity. To understand the purpose of a class,
it is essential to understand how this class interacts with
its clients. Every non-trivial class has a number of clients
that use their instances for different purposes. Thus, a
framework design methodology must provide means for
describing interactive behavior of instances of a class as
viewed from a particular use-context. An unstructured
class interface, which hides the different ways of using the
class, does not provide a way to identify its use in a spe-
cific context.

• Object collaboration. To understand how a framework
works, one needs to understand how its objects collabo-
rate at runtime (“no object is an island” [4]). Under-
standing collaboration behavior is important both for us-
ing the framework as well as extending it. Thus, a frame-
work design methodology must provide means for de-
scribing the collaboration behavior of instances of the
framework classes.

• Separation of concerns. Object collaborations them-
selves may become complex and may serve many differ-
ent purposes. These different purposes should be kept
separate to ease understanding and to increase reuse. A
framework design methodology must therefore provide a
way to specify single-purpose collaborative behavior, as
well as a way to compose these collaboration specifica-
tions.

• Reusable models and patterns. To reuse experience
and foster productivity, it is important to be able to reuse
existing models and apply patterns. The description of
these reusable models and patterns must blend well with
the framework design mechanisms to make the gap be-
tween the pattern or reusable model and its application as
small as possible.

 Framework integration deals with the description of how
clients make use of a framework by means of use-
relationships. This is to be distinguished from framework
extension, which deals with extending a framework by
means of inheritance.

• Client constraints. Only in a trivial case may a client of
a framework use it without fulfilling any requirements.
More frequently, the framework imposes constraints on
how it is to be used and requires specific behavior and
capabilities from its clients (e.g., to observe protocols or
to provide callback hooks). A framework integration
methodology must allow the framework designer to ex-
press such constraints.

• Unanticipated use-contexts. Sometimes, a framework
must be prepared for extension into unforeseen contexts,
e.g., because client requirements cannot be determined in
advance. The ability of a framework to be extended in
such a case is crucial for its successful reuse. Thus, a
framework integration methodology must provide con-
cepts that let frameworks be used or extended even in un-
anticipated use-contexts.

 For many of the problems listed above, individual solutions
exist. Specifying object collaborations has gained much
interest over the last years, and role modeling is probably
the most promising approach [14, 24, 3]. Role objects are
an important concept for framework integration [6, 7]. Yet,
a coherent methodology that combines these approaches for
framework design and integration is missing.

 ROLE MODELING
 We use role modeling as an enabling technology for
framework design and integration. Role modeling helps
address the aforementioned problems, but has not yet been
applied in a methodological way to the large-scale devel-
opment of object-oriented systems using frameworks. This
section informally describes a metamodel for role model
based software (micro) design to prepare the ground for our
discussion of role model based framework (macro) design.

 The presentation of the concepts in this paper focuses on
the design level of software systems (interface architecture)
and ignores the implementation level and its code structures
(implementation and code architecture). Roles and role
models are not first class programming language constructs,
so that a gap between design and implementation arises that
needs to be bridged by any given implementation anew.
How to do so is largely independent of the design level.

 Role and role type
 A role type describes the view one object holds of another
object. A role type is a type, so it can be described using an
appropriate type specification mechanism. An object, which
conforms to a given role type, acts according to the type
specification. One also says that the object plays a role
specified by a role type.

 At any given time, an object may act according to several
different role types. Thus, different clients may have differ-
ent distinct views on an object. Also, different objects may
provide behavior specified by a common role type.

 As an example, consider a drawing editor framework, and a
class Figure, which is the superclass of all classes of
graphical objects derived from the framework. It defines a
set of role types comprising, among others, the role types
Figure, Child, and Subject. These role types define different
behavioral aspects of a graphical figure object, i.e., an in-
stance (of a subclass) of Figure.

• Role type Figure describes the regular drawing func-
tionality of a graphical figure object (e.g., operations
draw, hide).

3

• Role type Child describes the functionality of being a
child object in an object hierarchy (e.g., operations get-
Parent, setParent).

• Role type Subject describes the functionality of being
observed for state changes by objects depending on the
figure object (e.g., operations register, unregister, notify).

 Figure 1 depicts the example design and introduces part of
the graphical notation used in the paper.

 In Figure 1, role types are qualified by a role model printed
in a smaller font under the role type name. A role model
defines a namespace for the role types that it defines, so that
the role type Figure from the FigureHierarchy role model is
fully qualified as FigureHierarchy.Figure, thereby distin-
guishing it from the class Figure. Every role type is unique.
To avoid name conflicts, we qualify role types using a
“RoleModel.RoleType” dot notation, e.g., FigureHierar-
chy.Client and Graphics.Client, when necessary.

 Object and class
 An object represents a phenomenon from an application
domain, technical or non-technical. A class is the abstrac-
tion from several similar objects, called its instances. A
class and defines a set of role types, the role type set, ac-
cording to which its instances may play roles. The class
specifies how these role types are combined in its instances.
The set of role types of a class fully determines the roles an
instance may play at runtime. The union of all operations
defined by the role types constitutes the class interface, and
the composition of all role types constitutes the type of the
class.

 A subclass inherits the role type set of its superclass. We
never had to use multiple inheritance at the design level (we
use multiple inheritance in the implementation to reuse
code). One reason why multiple inheritance is not used at
the design level is that role types provide a satisfactory so-
lution for those situations that might otherwise have led to
the use of multiple inheritance. We have therefore restricted

subclassing to single inheritance only. Standard substitut-
ability rules can be applied, because a class specification
can stand on its own, with the role types being resolved in
the class interface and abstract state model.

 We view role types and classes as complementary modeling
concepts. The purpose of a class is to represent a domain
abstraction, both its “intrinsic” properties and its behavior-
oriented properties. The intrinsic properties are modeled
using an abstract state space model, and the behavior-
oriented properties are modeled by the role types of the
class. Please note that we thereby maintain classes as mod-
eling concepts, and do not restrict them solely to imple-
mentation.

 Role model
 A role model is the description of a (possibly infinite) set of
object collaborations using role types. It focuses on a single
purpose of object collaboration: a role model does not try to
encompass all possible aspects of a given object collabora-
tion. In a role model, each role type specifies the behavior
of one particular object with respect to the model’s purpose.
The role types relate to each other using standard object
relationships like association and aggregation.

 A role model is, much like a traditional class diagram, a
constraining specification for a set of valid runtime object
collaborations. The difference between a role model based
specification and a class-based specification stems from the
modeling concepts involved. With role models, objects in
an object collaboration, which conforms to a role model,
are known to behave as specified by the role types of the
roles they are playing. However, a single role type specifies
only part of an object’s overall behavior. In contrast, using
class diagrams, objects in a collaboration are known to be
of particular classes. Such an assertion is more restrictive,
because a class already combines several different collabo-
ration aspects (role types) and does not distinguish the dif-
ferent purposes of the various collaboration arrangements.

Figure

A rectangle depicts a class,
with its role type set defined by
the role types put on top of it.

An oval depicts a role type,
with the role model in which it is
defined set below in a small font.

An arrow depicts
a directed use-
relationship.

A star depicts
an unlimited
cardinality.

A line depicts
a bidirectional
use-relationship.

0..* 1..*

Figure
(Figure Hierarchy)

Child
(Figure Hierarchy)

Subject
(Int. Fig. Observer)

Predecessor
(Figure Chain)

Parent
(Figure Hierarchy)

Observer
(Int. Fig. Observer)

Successor
(Figure Chain)

Client
(Figure Hierarchy)

Subject
(Figure Observer)

Observer
(Figure Observer)

Graphics
(Graphics)

Client
(Graphics)

Figure 1: The class Figure and its role types.

4

 Figure 2 shows the Figure Hierarchy role model, which
describes how figure objects play roles to maintain an ob-
ject hierarchy (object tree). An object playing a role speci-
fied by role type Parent may maintain several objects play-
ing a role specified by role type Child. Or, somewhat
shorter (though less precise): An object playing the Parent
role may maintain several objects, each playing the Child
role. If the context is clear, it can expressed even more suc-
cinctly: A Parent object maintains several Child objects.

 Both objects playing the Parent or Child roles are also ob-
jects playing the Figure role (this does not indicate an in-
heritance relationship but a role constraint, see below). An
object playing the Root role also always the Parent role. A
Root object represents the root of the object hierarchy and
provides special management functionality.

 Next to the usual object relationship descriptions, role types
also relate directly to each other to constrain how objects
may play several roles at once within the scope of a given
role model. E.g., a role may require another role, or a role
may prohibit another role. They are most conveniently ex-
pressed as a role relationship matrix [27].

 Let R be the set of all role types from a given role model.
Then, for every pair (A, B) of role types A and B from R,
exactly one role constraint value is defined. A role con-
straint value is one of the following: role-dontcare, role-
implied, role-equivalent, or role-prohibited.

• For a role type pair (A, B), a role-dontcare value states
that there are no constraints on an object playing any of
the roles defined by the role types A and B.

• For a role type pair (A, B), a role-implied value states
that an object playing a role defined by role type A must
always be able to play a role defined by role type B (but
not necessarily the other way).

• For a role type pair (A, B), a role-equivalent value
states that the role-implied constraint holds for (A, B) as

well as for (B, A). (I.e., both roles are always available
together.)

• For a role type pair (A, B), a role-prohibited value
states that an object playing a role defined by role type A
never plays a role defined by role type B and vice versa.

Role constraints are constraints on object collaborations.
Role constraints are always scoped by the role model, for
which they have been defined. Role constraints have conse-
quences on how role types are statically assigned to classes
(see next subsection).

These role constraints, in particular the role-implied con-
straint, should not be confused with the inheritance concept,
which is a relationship type that applies to classes only. The
white-headed arrows in Figure 2 represent role-implied
constraints, not class inheritance relationships. While the
role-implied constraint suggests equivalence with the class
inheritance concept, the analogy immediately breaks down
with the role-equivalent value, for which no similar class
relationship type exists, as inheritance is typically consid-
ered to be non-circular.

Role models can be composed. A role model composition is
a role model in which the individual role models appear
unchanged, but whose role types relate to each other using
any of the aforementioned constraints. The role constraints
specify constraints on how roles defined by role types from
the different role models come together in the composition.
They do not specify the actual type compositions, which are
only carried out in the context of classes and class models
(see below).

Figure 3 depicts the example of a role model composition
where the Figure Observer role model is composed with the
Figure Hierarchy role model of Figure 2. The connection
between the two role models is established by the role-
equivalent constraint between the Figure role type of the
Figure Hierarchy role model (i.e., FigureHierarchy.Figure)

1..*

Figure
(Figure Hierarchy)

Child
(Figure Hierarchy)

Parent
(Figure Hierarchy)

Client
(Figure Hierarchy)

Root
(Figure Hierarchy)

RootClient
(Figure Hierarchy)

Between two role types, an arrow with
a white arrowhead depicts a role-implied
role constraint value.

Between two role types, a line with a
block at each end () depicts a role-
prohibited value.

Between two role types, an arrow with a
white arrowhead at both ends depicts a role-
equivalent value (not shown).

If no role constraint value is given
for a pair of role types, the default role-
dontcare value is assumed.

Figure 2: The Figure Hierarchy role model.

5

and the Subject role type of the Figure Observer role model
(i.e., FigureObserver.Subject).

Role models provide excellent separation of concerns due
to their focus on one particular collaboration purpose, while
traditional class diagrams necessarily intertwine all different
object collaboration aspects. When composing role models,
several aspects of object collaborations can be specified
without prematurely committing to a class structure that
might turn out to be too rigid later on.

Class model
A class model is a set of classes that relate to each other
with any one of the following ways. First, classes may relate
to each other using class inheritance. Second, classes may
relate to each other by descriptions of the object relation-
ships defined by role types in their role type sets.

Classes combine role types, and class models combine role
models. Classes combine several role types from different
role models. Within a class model, some (or all) of the role
types of the involved role models are assigned to the role
type sets of the classes. Thereby, the role models (and their
role constraints) are resolved in the class model.

Role types in a role model may be left dangling for further
composition, but of each role model, at least one role type
needs to be in the role type set of a class. Otherwise it
would not be connected with the class model.

Figure 4 shows a (partial) class model that might be used in
the design of a graphical editor for UML-based object-
oriented designs. The graphical editor application provides
abstractions for Figure objects, which are maintained in an
object hierarchy. Next to three general classes (Figure,
CompositeFigure, RootFigure), the editor class model con-
tains two classes (RectangleFigure, ClassFigure) considered
specific to the UML editor. The class model can be ex-
tended with further classes like TextFigure and Associa-
tionFigure.

The design has many aspects. Several role models express
different aspects of runtime object collaborations. The class
model shows how the role types of the role models and their

constraints have been resolved so that the role constraints
are maintained.

The Figure Hierarchy role model describes how figure ob-
jects are maintained in an object hierarchy so that compos-
ite figures may contain figures, which in turn may be com-
posite figures that contain further figures, etc. The Figure
Chain role model describes how objects forward client re-
quests up the hierarchy, until a request is handled. The Fig-
ure Observer role model describes how clients register in-
terest in state changes of a given figure object and are noti-
fied about them. The Internal Figure Observer (abbreviated
as Int. Fig. Observer) role model describes how a Parent
object observes its Child objects to react to state changes
that might affect its own state.

The class model resolves the static aspects of the role con-
straints of the role model compositions. E.g., Figure 3 de-
fines a role-equivalent constraint between the role types
FigureHierarchy.Figure and FigureObserver.Subject. Thus,
class Figure defines both role types as elements of its role
type set, because the two role types must always be avail-
able together. A role-equivalent constraint between two role
types A and B always requires that a class maintains both
role types in its role type set, or that one of the role types is
always provided by every concrete subclass of a class that
defines the other role type. Another example of a role-
equivalent constraint is (FigureHierarchy.Parent, IntFigOb-
server.Observer), which we haven’t defined as an explicit
role model composition, but which is directly resolved in
the class model of Figure 4.

Role-implied constraints provide more freedom in assigning
role types to classes by using class inheritance. Both Fig-
ureHierarchy.Parent and FigureHierarchy.Child imply Fig-
ureHierarchy.Figure, but these implications have been re-
solved differently. Child and Figure are provided by the
same class Figure, while Parent is only introduced in the
subclass CompositeFigure. Assigning Child and Figure to
the same class in a class model is a stricter specification
than required by the original role model. It is a convenient
one, because it makes the class model simpler than it would
have been had every role-implied constraint lead to a sub-

1..*

Figure
(Figure Hierarchy)

Child
(Figure Hierarchy)

Parent
(Figure Hierarchy)

Client
(Figure Hierarchy)

Root
(Figure Hierarchy)

RootClient
(Figure Hierarchy)

0..* Subject
(Figure Observer)

Observer
(Figure Observer)

Figure 3: A composed role model.

6

class of it own. (This would have lead to many more classes
and multiple inheritance diamond structures.) The conse-
quence of this decision is that an invalid object configura-
tion, namely a Root object playing the Child role, cannot be
caught by static type checking anymore.

Role-dontcare and role-prohibited constraints provide no
constraints in assigning role types to classes. Role-
prohibited constraints provide no constraints, because they
are scoped by their role model. As an example, consider the
instantiation of the Observer pattern as, e.g., in Smalltalk’s
class Object (change/update mechanism). The instantiation
of the Observer pattern as a role model might specify a
role-prohibited constraint (Observer, Subject) so that an
object might not be allowed to observe itself. However, an
object may well play the Observer role in one context, and
the Subject role in another context as needed, e.g., in a noti-
fication chain of observers. This is a valid object configu-
ration, because the Observer and Subject role, while being
played by the same object, are being played in different
contexts, and not the same (the object is not observing it-
self). A role-prohibited constraint constrains the runtime
object collaboration, but not the class model.

Framework
A framework is a class model, together with an integration
role type set, and a builds-on class set. A framework covers
one particular domain or a significant aspect thereof. It is a
coherent unit of reuse, both by use-relationships and by
extension through subclassing. (Please note that we solely

focus on the design level, and ignore that frameworks typi-
cally provide reusable implementations as well.)

The integration role type set determines how the framework
is to be used by use-relationship based clients. It contains
those role types of the class model, which have not been
assigned to classes, and which must be defined by client
classes so that their instances can make use of objects from
the framework at runtime. An element of an integration role
type set is called an integration role type. A role model,
which provides an integration role type, is called an inte-
gration role model.

The builds-on class set specifies the classes of frameworks
the current framework builds on. To build on another
framework, the current framework assigns some or all of
the role types from the other framework’s integration role
type set to its classes. The builds-on class set comprises
those classes of other frameworks that define role types
from role models, in which integration role types are in-
volved that are used by the current framework.

Figure 5 shows the Figure framework of the example. The
integration role type set of the framework contains the role
types FigureHierarchy.Client, FigureObserver.Observer,
and FigureHierarchy.RootClient.

The builds-on class set contains the single class Graphics
from a Graphics framework, which provides Figure objects
with functionality to draw them on a device-independent
graphics context. Classes of a specific framework are re-

RootFigure

CompositeFigure

Figure

ClassFigure

RectangleFigure

Graphics

0..*

1..*

Figure
(Figure Hierarchy)

Child
(Figure Hierarchy)

Subject
(Int. Fig. Observer)

Predecessor
(Figure Chain)

Parent
(Figure Hierarchy)

Observer
(Int. Fig. Observer)

Successor
(Figure Chain)

Client
(Figure Hierarchy)

Subject
(Figure Observer)

Observer
(Figure Observer)

Root
(Figure Hierarchy)

RootClient
(Figure Hierarchy)

Graphics
(Graphics)

Client
(Graphics)

Figure
(Rectangle Figure)

Client
(Rectangle Figure)

Figure
(Class Figure)

Client
(Rectangle Figure)

Client
(Class Figure)

A line with a white arrowhead
between classes indicates an

inheritance relationship.

Figure 4: A (partial) class model for figures for a UML editor.

7

ferred to using a “Framework.Class” dot notation to qualify
class names (e.g., Graphics.Graphics).

Figure 6 illustrates the Graphics framework.

The integration role type set of the Graphics framework
comprises the role types Graphics.Client, Clipping.Client,
Polylining.Client, Texting.Client, and Imaging.Client.

The classes Graphics.Image, Graphics.Font, and Graph-
ics.Polygon are used by application-specific subclasses of
the Figure framework and are therefore not part of the Fig-
ure framework’s builds-on class set (see section on frame-
work design). However, they are part of the builds-on class
set of the application-specific extension of the framework.

The builds-on class set of the Graphics framework is empty
since it is implemented using the native API of an underly-
ing window system.

System model
A system model is a class model. It may be the composition
of an arbitrarily large set of frameworks (and framework
extensions, see section on framework design).

FRAMEWORK DESIGN
We now show how the basic role modeling metamodel is
used in the design of object-oriented frameworks and how it

helps address the problems described in the section on
problems in frameworks design and integration.

General characteristics
Frameworks have been characterized as being black-box or
white-box (or both) [16]. These attributes indicate the in-
tended usage of a framework. A black-box framework is
expected to work out of the box: a client (object) can use
the framework by instantiating classes and composing the
instances to suit its needs. A white-box framework requires
clients to supply new subclasses first, before objects can be
created and composed. Many frameworks combine both
characteristics by providing readily usable classes as well as
abstract classes that are subclassed to provide application-
specific classes.

These characteristics apply to the given framework defini-
tion of the metamodel section as well. The Figure frame-
work is a white-box framework: Figure, CompositeFigure,
and RootFigure are abstract classes that need to be sub-
classed for application-specific classes. Figure 4 shows
such a (partial) extension for an UML diagram editor.

The Graphics framework is primarily a black-box frame-
work that clients make direct use of without having to pro-
vide new subclasses. The object transport service frame-

RootFigure

Figure Graphics

CompositeFigure

0..*

1..*

Figure
(Figure Hierarchy)

Child
(Figure Hierarchy)

Subject
(Int Fig Observer)

Client
(Graphics)

Graphics
(Graphics)

Predecessor
(Figure Chain)

Parent
(Figure Hierarchy)

Observer
(Int Fig Observer)

Successor
(Figure Chain)

Client
(Figure Hierarchy)

Subject
(Figure Observer)

Observer
(Figure Observer)

Root
(Figure Hierarchy)

RootClient
(Figure Hierarchy)

The box around the
framework classes is just
a convenient grouping to
illustrate that they belong
together (i.e., they belong

to the same package).

Figure 5: The Figure framework.

8

work, which we described using role models [23], is a
black-box framework.

Framework design
Frameworks are designed by defining and composing role
models and assigning role types to classes.

We have found that design patterns are not only of occa-
sional use when defining role models and designing frame-
works, but of central importance. The application (i.e., the
instantiation) of a design pattern yields a role model. We
have described a catalog of object-oriented design patterns
using role models [26], and illustrated their use in the de-
sign of frameworks [23].

Design patterns are ubiquitous in the design of frameworks.
In [23], we discuss a large framework, which provides 12
classes and 19 role models, all of which are pattern appli-
cations. We call this effect a “high pattern density.” Almost
every non-trivial role model we have seen that goes beyond
a simple binary client/service role model, e.g., a ternary or
an n-ary role model, can be identified as a pattern instance.
Further case studies, presented in [29], support this finding
with more statistical data.

When composing role models, the role constraints must be
observed. Finally, the integration role type set and the
builds-on class set need to be determined. The metamodel
section illustrates this procedure.

Framework extension
Frameworks are extended to provide application-specific
classes by subclassing. Every abstract class of the class
model of a framework can be used as a superclass for an
application-specific class. Extending a framework is done
by providing a new subclass, which adds some role types to
the role type set inherited from the superclass. A subclass
that does not introduce new role types does not exist on the
design-level, because it represents only a new implementa-
tion of an already known class.

Thus, a framework extension class is a class that is a sub-
class of a framework class or of another framework exten-
sion class. The set of framework extension classes of a par-
ticular application is called the framework extension class
set.

To provide application-specific functionality, an extension
class typically makes use of further frameworks. Figure 7
shows how the RectangleFigure class of the UML-editor
extension of the Figure framework makes use of the
Polylining role model of the Graphics framework. To do so,
the RectangleFigure class defines the Polylining.Client role
type for its instances. A second example is how the Class-
Figure class defines the Texting.Client role type for its in-
stances in order to make use of the Texting role model of
the Graphics framework. Thus, a framework extension class

Graphics

Image

Polygon

Font

Polyliner
(Polylining)

Client
(Polylining)

Texter
(Texting)

Font
(Texting)

Polygon
(Polylining)

Client
(Texting)

Imager
(Imaging)

Image
(Imaging)

Client
(Imaging)

Graphics
(Clipping)

Client
(Clipping)

Graphics
(Graphics)

Client
(Graphics)

Figure 6: The Graphics framework.

9

is one of several means for integrating frameworks (see
section on framework integration).

Like a framework, a framework extension defines an inte-
gration role type set, which lists the new role types it pro-
vides to clients, and a builds-on class set, which lists the
classes the framework extension depends on.

FRAMEWORK INTEGRATION
This section discusses how clients build upon existing
frameworks. We first discuss the most frequent case, where
a framework defines its integration points using a fixed in-
tegration role type set. We then discuss how to deal with
new and unforeseen clients that need to dynamically attach
new roles types to a framework, based on new and unfore-
seen requirements.

Direct coupling
Frameworks are integrated into a larger context by that
context making use of the framework. Making use of a
framework means making use of classes from the frame-
work or a given framework extension. To use a class, a cli-
ent class defines for its role type set one or more role types,
which stem from role models in which this class is involved
in. Thus, a role model acts as the bridge between a frame-
work and its clients.

Role models act as the bridge between a client and a
framework, because they define the roles the client and the
framework objects must play in order to work together
properly. They define both the services offered by a frame-
work, as well as the requirements a client has to fulfill to
successfully use these services. The extent to which the
requirements are made explicit depends on the chosen
specification mechanism.

A client of a framework may be any class, independently of
whether it stands alone as some initial application class, or
whether it is a framework class or a framework extension
class. It must only fulfill the constraints set up by role mod-
els of the role types from the integration role type set of the
framework.

Figure 7 provides an example: the Figure and Rectangle-
Figure classes of the Figure framework use the Graphics
and Polygon classes of the Graphics framework. The first
part of the integration is on the framework level: class Fig-
ure uses class Graphics via the Graphics role model. The
second part of the integration is on the framework extension
level (from the client, i.e., the Figure framework, point of
view): class RectangleFigure, an extension class of the Fig-
ure framework, uses class Graphics via the Polylining role
model. The integration takes place using the Graphics and

GraphicsRectangleFigure ClassFigure

Polygon

Font

Figure CompositeFigure
Client

(Graphics)

Polyliner
(Polylining)

Graphics
(Graphics)

Client
(Polylining)

Texter
(Texting)

Font
(Texting)

Polygon
(Polylining)

Client
(Texting)

Client
(Class Figure)

Figure
(Class Figure)

Client
(Rectangle Figure)

Figure
(Rectangle Figure)

Figure 7: Coupling of Figure and RectangleFigure with Graphics.

10

Polylining role model, respectively, and by assigning role
types from these role models to the framework classes.

As a second example, consider how clients make use of the
Figure framework. We consider two different types of cli-
ents, a TinyEditor client class, which takes on most of the
responsibility of handling figures itself, and a UmlEditor
client class, which represents a more sophisticated UML
editor application.

The tiny editor application provides a TinyEditor class,
which allows users to work with some basic figures, e.g.,
circles and rectangles. It takes on the responsibilities of
creating and handling these figures, as well as placing them
into a concrete implementation of a generic RootFigure
instance, which acts as the containing picture object. Han-
dling figures takes place by using the Figure Hierarchy role
model as well as role models that are specific to the figure
subclasses, e.g., CircleFigure and RectangleFigure. Crea-
tion and initialization of figure objects takes also place us-
ing these subclass specific role models (which is a simpli-
fying assumption: complex initialization protocols should
be role models of their own). Figure 8 shows how the
TinyEditor class collects all the relevant role types in its
role type set.

In contrast, a more realistic UML editor application factors
the different functionality into different objects, which take

on different roles. Figure 9 depicts parts of its design. The
application extends the Figure framework with classes like
PolygonFigure, ClassFigure, and ClassDiagram. An in-
stance of ClassDiagram is understood here as a visually
editable view on the underlying system being modeled.

We use one design aspect to illustrate the flexibility of role
modeling for integrating frameworks: Class UmlEditor
delegates the handling of figures (creation, moving, resiz-
ing, etc.) to Tool objects (based on the Strategy pattern
[12]). For every different type of operation, there is one
Tool subclass. Its instances are used to carry out the re-
spective figure handling operation they implement. Some of
these operations can be carried out using the FigureHierar-
chy.Figure role type, some need subclass specific role mod-
els, e.g., role model PolygonFigure for manipulation of
polygons.

Integration takes place both on the framework and frame-
work extension level. On the framework level, both classes
UmlEditor and Tool, as well as specific Tool subclasses,
put the FigureHierarchy.Client role into their role type set.
On the framework extension level, subclasses like Polygon-
Figure and ClassDiagram introduce new role models. The
client role types of these role models are taken on by differ-
ent classes, e.g., UmlEditor, as well as specific Tool sub-
classes.

RootFigure

Figure

CompositeFigureRectangleFigureCircleFigure

TinyEditor

1..*

Figure
(Figure Hierarchy)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int Fig Observer)

Predecessor
(Figure Chain)

Parent
(Figure Hierarchy)

Observer
(Int Fig Observer)

Successor
(Figure Chain)

Client
(Figure Hierarchy)

Subject
(Figure Observer)

Observer
(Figure Observer)

Root
(Figure Hierarchy)

Figure
(Rectangle Figure)

Figure
(Circle Figure)

Client
(Circle Figure)

Client
(RectangleFigure)

RootClient
(Figure Hierarchy)

Figure 8: Integration of Figure framework for tiny editor application.

11

We call this integration mechanism “direct coupling,” be-
cause a framework and its extensions define precisely how
they may be integrated. This is done by client classes put-
ting role types from integration role models into their role
type set. This direct way of integrating frameworks is by far
the most frequently used one.

Role objects
The framework integration mechanism just described is
based on a statically defined set of integration role types
offered by the key abstractions of a framework. Thus, a
framework anticipates its use-contexts and defines a fixed
set of integration points in the form of integration role mod-
els and role types. However, in large systems, new clients

may require new role models for integration with a frame-
work on which they want to build. If these role models have
not been anticipated, the respective role types are not avail-
able, and integration cannot be carried out. To overcome
this problem, means to dynamically attach role types to a
framework’s key abstractions as required by new clients are
needed.

The primary example used to illustrate this problem is the
class Person and its different roles in different contexts, as
found, e.g., in the banking and insurance business domain.
Here, full application suites depend on specific roles of
Person, which may be as diverse as Customer, Guarantor,
Investor, Patient, MedicalDoctor, Employee, and Manager.

RootFigure

Figure

ClassDiagram

CompositeFigurePolygonFigureTool

PolygonTool ClassFigure

UmlEditor

0..*

1..*

Figure
(Figure Hierarchy)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int Fig Observer)

Predecessor
(Figure Chain)

Parent
(Figure Hierarchy)

Observer
(Int Fig Observer)

Successor
(Figure Chain)

Client
(Figure Hierarchy)

Client
(Figure Hierarchy)

Subject
(Figure Observer)

Observer
(Figure Observer)

Root
(Figure Hierarchy)

Polygon
(Polygon Figure)

ClassFigure
(Class Figure)

Client
(Tool)

Tool
(Tool)

Client
(Polygon Figure)

RootClient
(Figure Hierarchy)

ClassDiagram
(Class Diagram)

Client
(Class Diagram)

Figure 9: Integration of Figure framework for UML editor application.

12

Figure 10 shows a set of simplified role models and their
composition using role constraints. Each role model stems
from a different framework. The Person and Customer role
types may stem from frameworks of general interest, but the
Retail, Debitor, and Investor role types come from more
specific applications that typically are not available on
every desktop.

In Figure 10, each role-implied constraint (A, B) expresses
that an object must provide role type B if it wants to pro-
vide role type A. E.g., Customer.Customer requires Per-
son.Person, and Investor.Investor requires Cus-
tomer.Customer. (A person that plays the investor role must
also always be able to play the customer role, which is its
precondition, as defined in the banking domain.)

Figure 11 shows class Person with two selected role types
Customer and Employee, both of which are used together
with the Person role type by different clients.

The classes CustomerView and EmployeeView represent
clients from a Customer Handling and Employee Handling
framework, which may be used together or which may be
kept separate. Each client framework introduces its specific
role models, some role types of which need to be attached
to the Person class of the Person framework.

If all role types are known in advance, they could be di-
rectly attached to class Person. However, this would make
class Person a very heavyweight abstraction, and in a given
application, only a fraction of the role types might actually
be needed. Moreover, not all role models may be known in

advance, and new ones might be added during system evo-
lution when new requirements come up. Thus, one must
provide means to dynamically attach role types to class
Person.

In systems that do not provide adequate means to change
class definitions at runtime, role objects can be used to at-
tach new role types to some key abstraction. We illustrate
the importance of role objects for framework integration in
[6] and discuss its implementation in [7]. Here, we show
how role objects fit into a general role modeling approach.

A role object is an object that represents one specific role of
a core object to its clients. The role object wraps the central
core object. The core object maintains its role objects for
the different clients it is used by. The core object is an in-
stance of a class, which provides the core functionality.
Each role object is an instance of a class that provides one
particular role type. The core object allows for the dynamic
creation and deletion of role objects at configuration and
runtime so that new and unforeseen role types can be at-
tached to it on demand. The core object represents the ob-
ject conglomerate and makes it appear as one logical object.
It provides means for state integration, even if the logical
state is spread over several physically distinct objects.

Figure 12 shows how the Person framework provides means
for dynamically attaching new role types as subclasses of a
predefined PersonRole class. The framework itself, pro-
viding extended role functionality, can be described well
using the basic role modeling concepts.

Person
(Person)

Client
(Person)

Employee
(Employee)

Client
(Employee)

Guarantor
(Guarantor)

Client
(Guarantor)

Customer
(Customer)

Client
(Customer)

Client
(Investor)

Investor
(Investor)

Client
(Debitor)

Debitor
(Debitor)

Client
(Retail)

Retail
(Retail)

Figure 10: Composition of role models from different frameworks.

PersonCustomerView EmployeeView

Employee
(Employee)

Client
(Employee)

Client
(Person)

Customer
(Customer)

Client
(Customer)

Person
(Person)

Client
(Person)

Figure 11: The Person class and two of its clients.

13

The Person class, as well as every subclass of PersonRole,
provides a role type for client integration based on its pri-
mary purpose (i.e., providing the Person, Customer, or Em-
ployee role type). In addition, the Person class provides the
Trader role type of the Role Trader role model, which lets
clients request a specific role object from a given Person
object. A role object is always an instance of a subclass of
PersonRole. The PersonRole class provides the Person-
Role.Role role type, which lets clients physically navigate
the object structure, e.g., access the wrapped core object.

Every role object interacts with the core object to maintain
a consistent overall state. In the concrete framework of Fig-
ure 12, this integration is carried out by maintaining a gen-
erically accessible list of attribute objects in the core (Prop-
erty List pattern [26]), and by notifying role objects about
attribute changes using the Observer pattern [12].

We make PersonRole a subclass of Person rather than an
unrelated class, because it best resolves the role-implied
constraints between the role types illustrated in Figure 10.
For a client class of Customer, it guarantees that not only
the role type Customer.Customer is available, but also Per-
son.Person. A client object typically plays several client
roles from different role models, between which it can con-
veniently switch if all role types are directly accessible. The
implementation of a Customer role object typically directly

implements the Customer role type functionality and dele-
gates the Person role type functionality to the core object it
wraps.

DISCUSSION
We have designed our role modeling metamodel in such a
way that it solves the problems described in the beginning.
This section discusses whether the metamodel and the con-
cepts based on it fulfill this purpose.

Class complexity
The complexity problem of class interfaces is resolved eas-
ily by role modeling. By virtue of the role type set of a
class, an explicit separation of instance collaboration con-
cerns is achieved, which cannot be provided by a single
class interface. A role type defines precisely how an in-
stance of a class interacts in a given context (and through
the role model, it defines what behavior it requires from
that context to be operational).

Thus, our role modeling approach provides a sound design-
level basis to programming language level concepts like
Smalltalk method categories [13], Objective-C protocols
[8], and Java multiple interfaces [2].

Object collaboration and separation of concerns
As noted, much of the design-level framework complexity
stems from the complexity of object collaborations. Role

EmployeeCustomer

PersonCore

Person

PersonRole 0..*

0 ..*

Person
(Person)

Product
(Role Trader)

Client
(Person)

Trader
(Role Trader)

Client
(Role Trader)

Role
(Person Role)

Client
(Person Role)

Subject
(Core Observer)

Observer
(Core Observer)

Core
(Core Properties)

Client
(Core Properties)

Employee
(Employee)

Client
(Employee)

Customer
(Customer)

Client
(Customer)

Figure 12: Part of the Person, Customer and Employee framework.

14

modeling addresses both problems of properly specifying
object collaborations and breaking them up into manage-
able pieces by means of role models. A role model de-
scribes one particular object collaboration concern. By
composing role models, multiple purpose object collabora-
tions can be described succinctly.

As already illustrated by Reenskaug [24], role modeling
significantly increases intellectual manageability of object
collaborations. This is achieved by the clear separation of
concerns of the different object collaboration aspects as
individual role models.

Reusable models and patterns
Many object-oriented design patterns can be described well
using role modeling [25, 28, 23]. In particular object col-
laboration patterns can be described much better with role
modeling than with classes. [26] contains role model based
descriptions of a large number of commonly known pat-
terns.

Reconsider the framework example of Figure 5. The Figure
Hierarchy role model is an instance of the Composite pat-
tern, the Figure Chain role model is an instance of the
Chain of Responsibility pattern, the Figure Observer role
model is an instance of the Observer pattern, and the Inter-
nal Figure Observer role model is another instance of the
Observer pattern.

The application of a pattern leads to a (hopefully) reusable
role model. As already demonstrated, role models can be
reused (composed) quite naturally. In comparison to this,
class hierarchies are much more difficult to compose, as
Ossher and Harrison show [21]. Therefore, role modeling
as described in this paper helps both to better define reus-
able models as well as to close the gap between design pat-
terns and a concrete framework design.

Client constraints
By providing role models as an explicit bridge between a
framework and its clients, the requirements of a framework
on its context are clarified. Such an integration role model
does not only specify what a framework provides, but also
what it requires from its clients.

Role types are a better means for specifying these require-
ments than classes, because classes are too restrictive. Re-
quiring from a client class to inherit from a framework pro-
vided class to use the framework is more restrictive than
specifying that the client class must provide a specific set of
role types. Using role types rather than classes as con-
straints on the context lets clients define their own classes
without inheriting possibly unwanted and inadequate bag-
gage.

Unanticipated use-contexts
The use of role objects is an excellent means for attaching
new and unforeseen role types to classes of a framework
that do not provide these role types right from the begin-
ning. It solves the problem of a certain set of unanticipated

requirements a context might pose on an already existing
framework. Role objects incur a cost, though: they need to
be prepared for. Thus, what must be anticipated is a par-
ticular type of unanticipated requirements, namely the need
to tie in new role models into an existing framework to
make it useful for clients.

Some programming languages, e.g., CLOS [22], and some
programming systems, e.g., IBM Smalltalk [15], provide
means to dynamically attach new functionality to classes,
but this is usually not available in most mainstream pro-
gramming language definitions, e.g., C++, Java, and
Smalltalk. Role objects provide a means to cope with this
problem on a programming language independent level.

RELATED WORK
Role models play a central role in the OOram methodology
[24] and in Andersen’s dissertation [3]. Both present a
metamodel for conceptual modeling of object systems using
roles and role models, in a style that is similar to the pres-
entation of our metamodel summary in the metamodel sec-
tion. Reenskaug and Andersen address large-scale software
systems, but they only hint at frameworks as design artifacts
on a level of scale between classes and large-scale compo-
nents. They only discuss composed role models, with a
system being viewed as the composition of a set of role
models, and omit the intermediate framework level as dis-
cussed in this paper.

Our approach uses role models as a means to design and
integrate frameworks. We consider frameworks to be im-
portant concepts of large-scale object-oriented system de-
velopment. In practice, frameworks are an important asset
of many large-scale developments, and numerous groups
have recognized the value of frameworks. We thereby ad-
dress an issue that has not been addressed by Reenskaug
and Andersen. Frameworks are not just composed role
models, but cohesive design artifacts, with well-defined
integration points and ways of extending them. In addition,
we have identified novel concepts like role constraints and
role objects in the context of role modeling, which are con-
cepts that help solve open problems in role model based
systems modeling.

More related work on object collaboration specification and
composition exists. To all, our primary critique applies: The
work directly proceeds from the simple model level to the
large-scale component and system level, without much con-
sideration for an intermediate framework level.

D’Souza and Wills are working on a new UML-based
methodology [32, 33, 34], which is similar to OOram in
many respects, even though it does not use the concepts of
role and role model. Rather, they use the concepts of inter-
face and framework. However, they seem to use these con-
cepts equivalently to Reenskaug’s use of the role and role
model concepts. Their definition of framework is different
from the one we are using, and from what we know about
their methodology, they do not provide an explicit approach

15

to the design and integration on the framework level, as
understood here, and as is the focus of this paper.

The work on CRC [4, 37] recognizes the importance of
managing collaboration complexity. However, the approach
use classes as the primary modeling concept and therefore
falls short to address the problems illustrated in the section
on problems in framework design and integration.

Contracts are behavioral specifications that can be com-
posed to derive class models similar to ours [14]. Composi-
tion filters are an approach to separating object concerns [1]
that also focuses on factoring behavioral aspects within a
single object or component. VanHilst presents a composi-
tion methodology for collaboration based designs based on
role-model alike design fragments [36].

Harrison and Ossher have defined subject-oriented pro-
gramming, which deals with integrating different but related
system models and implementations to build a whole sys-
tem [20]. A subject is a design artifact of typically several
classes and their implementation that can be composed by
means of class composition operators.

The need to separate the different views on a design artifact
has gained more attention through the work on viewpoints
[11]. Here, different ways of specifying and using context-
specific views on design artifacts are being explored.

A pertinent issue of role modeling is separations of con-
cerns, which has received much attention recently. Most
prominently, aspect-oriented programming [17] tries to
describe systems as compositions of aspects. However, “as-
pects” are functional and behavioral aspects of objects or
components and are different from role types (or role mod-
els).

Rito Silva presents a domain specific methodology for the
development of concurrent systems [30]. This methodology
uses class-based modeling, and with it comes all the com-
plexity of class composition, as described by Ossher and
Harrison [21].

In summary, different approaches and methodologies have
addressed the problems of separation of concerns, but none
of them has been extended to cover the design and integra-
tion of object-oriented frameworks on a general level.
However, this area is the core theme of this paper, which
reflects our observation that frameworks are a key compo-
nent of the design of modern object-oriented systems.

CONCLUSIONS
Modern object-oriented systems are built from frameworks,
which have been shown to be an important means of object-
oriented software system construction. Yet, the design of
frameworks and their use by clients to develop applications
poses a number of difficult problems in terms of intellectual
manageability, specification, and evolution. Many of these
problems can be attributed to the sole use of classes as the
primary modeling concept.

An exclusive focus on classes causes a number of problems
in object-oriented framework design and integration. To
overcome these problems, we develop an approach to
framework design that is based on role models. Role mod-
els for framework design build on role models for object
design. The use of role models for the design and integra-
tion of a framework makes clear the intent of the interaction
(between objects and between the framework and its cli-
ents). Therefore role model based framework design pro-
vides designers and users of a framework with a way to deal
with class and object collaboration complexity, proper
modeling of separate concerns, the definition of constraints
on the use-context of frameworks, and framework use after
new requirements are introduced.

The design of a framework can be composed from a num-
ber of role models, each of which may be a pattern instance.
Some of the role models serve as integration role models
that define how clients of the framework are to use it. Ef-
fectively, these integration role models bridge the gap be-
tween a framework and its clients, and make explicit what is
expected from clients that want to work with the frame-
work. Finally, role objects show how frameworks can be
integrated into unforeseen use-contexts that emerge when
requirements change or are extended.

Our experience with this approach in several real-world
case studies indicates that the presented concepts signifi-
cantly help with framework design and integration. Role
model based framework design provides advantages in ad-
dressing the core areas of framework design: managing the
collaboration complexity inherent in non-trivial frame-
works, description of how a framework is to be used (by
clients), and devising a structure that allows a framework to
work in unanticipated use-contexts. Given the importance
of frameworks for the efficient construction of large-scale
applications, we expect that role model based design will
play an important role in the construction of future frame-
works.

ACKNOWLEDGEMENTS
We would like to thank Hans Wegener and the anonymous
reviewers for their comments on the paper.

REFERENCES
1. Lodewijk Bergmans and Sinan Vural. “An Object-

Oriented Language-Database Integration Model: The
Composition-Filters Approach.” In Proceedings of the
1992 European Conference on Object-Oriented Pro-
gramming (ECOOP ’92). Springer-Verlag, 1992. Page
372-395.

2. Ken Arnold and James Gosling. The Java Programming
Language. Addison-Wesley, 1996.

3. Egil P. Andersen. Conceptual Modeling of Objects.
Ph.D. Thesis. Oslo, Norway: University of Oslo, 1997.

4. Kent Beck and Ward Cunningham. “A Laboratory for
Teaching Object-Oriented Thinking.” In Proceedings of
the 1989 Conference on Object-Oriented Programming

16

Systems, Languages, and Applications (OOPSLA ’89).
ACM Press, 1989. Page 1-6.

5. William Berg, Marshall Cline, and Mike Girou. “Les-
sons Learned from the OS/400 OO Project.” Communi-
cations of the ACM 38, 10 (October 1995): 54-64.

6. Dirk Bäumer, Guido Gryczan, Rolf Knoll, Carola Li-
lienthal, Dirk Riehle, and Heinz Züllighoven. “Frame-
work Development for Large Systems.” Communica-
tions of the ACM 40, 10 (October 1997). Page 52-59.

7. Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina
Wulf. “Role Object.” In Proceedings of the 1997 Con-
ference on Pattern Languages of Programming (PLoP
’97). Washington University Department of Computer
Science, Technical Report WUCS-97-34, 1997. Paper
2.1, 10 pages

8. Brad J. Cox. Object-Oriented Programming: An Evolu-
tionary Approach. Addison-Wesley, 1987.

9. Sean Cotter, with Mike Potel. Inside Taligent Technol-
ogy. Addison-Wesley, 1995.

10. Mohamed E. Fayad and Wei-Tek Tsai (editors). Special
Issue on Object-Oriented Experiences. Communications
of the ACM 38, 10 (October 1995).

11. Anthony Finkelstein. “Relating ViewPoints: A Preface
to Viewpoints ’96.” In Proceedings of the 1996 Inter-
national Workshop on Multiple Perspectives in Soft-
ware Development. ACM Press, 1996. Page 157.

12. Erich Gamma. Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns—Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, 1995.

13. Adele Goldberg and David Robson. Smalltalk-80—The
Language. Addison-Wesley, 1989.

14. Richard Helm, Ian M. Holland and Dipayan Gangopad-
hyay. “Contracts: Specifying Behavioral Compositions
in Object-Oriented Systems.” In Proceedings of the
1990 Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’90).
ACM Press, 1990. Page 169-180.

15. International Business Machines Corporation. IBM
Smalltalk User’s Guide, Version 3, Release 0. Interna-
tional Business Machines Corporation, 1995.

16. Ralph E. Johnson and Brian Foote. “Designing Reusable
Classes.” Journal of Object-Oriented Programming 1, 2
(June/July 1988). Page 22-35.

17. Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin. “Aspect-Oriented Programming.” In Pro-
ceedings of the 1997 European Conference on Object-
Oriented Programming (ECOOP ’97). Springer Verlag,
1997. Page 220-242.

18. Karl J. Lieberherr. Adaptive Object-Oriented Software.
Boston, MA: PWS Publishing Company, 1995.

19. Simon Moser and Oscar Nierstrasz. “The Effect of Ob-
ject-Oriented Frameworks on Developer Productivity.”
Computer 29, 9 (September 1996): 45-51.

20. William Harrison and Harold Ossher. “Subject-Oriented
Programming (A Critique of Pure Objects).” In Pro-
ceedings of the 1993 Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA ’93). ACM-Press, 1993. Page 411-428.

21. Harold Ossher and William Harrison. “Combination of
Inheritance Hierarchies.” In Proceedings of the 1992
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA ’92). ACM
Press, 1992. Page 25-40.

22. Andreas Paepcke. Object-Oriented Programming—The
CLOS Perspective. MIT Press, 1993.

23. Dirk Riehle, Roger Brudermann, Thomas Gross, and
Kai-Uwe Mätzel. “Pattern Density and Role Modeling
of an Object Transport Service.” ACM Computing Sur-
veys 30, 4 (December 1998). To appear.

24. Trygve Reenskaug, with Per Wold and Odd Arild Le-
hne. Working with Objects. Greenwich: Manning, 1996.

25. Dirk Riehle. “Describing and Composing Patterns Using
Role Diagrams.” In Proceedings of the 1996 Ubilab
Conference, Zürich. Edited by Kai-Uwe Mätzel and
Hans-Peter Frei. Konstanz, Germany: Universitätsverlag
Konstanz, 1996. Page 137-152. Originally published in
Proceedings of the 1st International Conference on
Object-Orientation in Russia (WOON ’96). Edited by
Alexander V. Smolyaninov and Alexei S. Shestialtynov.
St. Petersburg, Russia: Electrotechnical University,
1996. Page 169-178.

26. Dirk Riehle. A Role-Based Design Pattern Catalog of
Atomic and Composite Patterns Structured by Pattern
Purpose. Ubilab Technical Report 97.1.1. Zürich, Swit-
zerland: Union Bank of Switzerland, 1997. Also avail-
able from www.riehle.org.

27. Dirk Riehle. “Composite Design Patterns.” In Proceed-
ings of the 1997 Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications
(OOPSLA ’97). ACM Press, 1997. Page 218-228.

28. Dirk Riehle. “Bureaucracy.” In Pattern Languages of
Program Design 3. Edited by Robert C. Martin, Dirk
Riehle, and Frank Buschmann. Addison-Wesley, 1998.
Page 163-186.

29. Dirk Riehle. Framework Design and Integration: A
Role Model Based Approach. Work in progress.

30. Antonio Rito Silva. “Framework, Design Patterns, and
Pattern Language for Object Concurrency.” In Pro-
ceedings of the 1997 International Conference on Par-
allel and Distributed Processing Techniques and Appli-
cations (PDPTA ’97).

17

31. Steve Sparks, Kevin Benner, and Chris Faris. “Manag-
ing Object-Oriented Framework Reuse.” Computer 29,
9 (September 1996): 52-61.

32. Desmond D’Souza. “Collaborations: Beyond Subtypes.”
Journal of Object-Oriented Programming (January
1997): 61-66.

33. Desmond D’Souza. “Types and Classes: A Language-
Independent View.” Journal of Object-Oriented Pro-
gramming (March/April 1997): 10-13.

34. Desmond D’Souza. “Frameworks in Java and Cataly-
sis.” Journal of Object-Oriented Programming (May
1997): 59-62.

35. Rational Software Corporation et al. UML v1.1 Seman-
tics. Santa Clara, CA: Rational Software Corporation,
1997.

36. Michael VanHilst and David Notkin. “Using Role Com-
ponents to Implement Collaboration-Based Designs.” In
Proceedings of the 1996 Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA ’96). ACM Press, 1996. Page 359-
369.

37. Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener.
Designing Object-Oriented Software. Prentice Hall,
1990.

