
Ubilab Technical Report, 1998-10-10
Values in Object Systems

Want Value Objects in Java?

Check out JValue,
a framework for Value Objects in Java, at:

http://www.jvalue.org

Latest News:

JValue will be moved to SourceForge!

This page intentionally left blank.

9DOXHV�LQ�2EMHFW�6\VWHPV

'LUN�%lXPHU��'LUN�5LHKOH��:ROI�6LEHUVNL�
&DUROD�/LOLHQWKDO��'DQLHO�0HJHUW��.DUO�+HLQ]�6\OOD��+HLQ]�=�OOLJKRYHQ

8ELODE�7HFKQLFDO�5HSRUW��������

��

8ELODE

Ubilab is the information technology laboratory of UBS AG. It pursues a small number of attractive,
highly competitive research projects with the aim of maintaining the status of a recognized research
institution.

It is the task of Ubilab to actively assist UBS with its goal of becoming a leader in the mastery of
modern IT equipment, techniques, and methods. This task is pursued by means of intimate involve-
ment in application-oriented research and advanced development projects. Furthermore, UBS contrib-
utes to fostering the interaction between IT research and application, that is between academia in its
search for new methods, and business in its application of them. To this purpose Ubilab cooperates
with universities and other research institutions on a worldwide basis. The goal is to expand the scope
of the Laboratory by carrying out common projects, thus guaranteeing—provided top-notch partners
are found—the quality of the research. The impact of Ubilab is therefore focussed on both the IT de-
partments of UBS AG and the IT research community at large.

For further information about Ubilab, staff, projects, or publications see our World Wide Web
(WWW) pages. Feel free to contact the staff personally via e-mail or to write to the mailing address
given below.

Location of Ubilab

Universitätsstrasse 84
CH-8033 Zurich
Switzerland

Mailing address

UBS AG, Ubilab
Postfach
CH-8098 Zurich

Electronic access

Phone: ++41 1 236 57 14
Fax: ++41 1 236 46 71
E-mail: firstname.lastname@ubs.com
WWW: http://www.ubs.com/ubilab

7DEOH�RI�&RQWHQWV

1 Introduction ... 7

2 Motivation.. 9

2.1 MonetaryAmount example ...9

2.2 Performance consequences ...10

3 Objects and Values..13

3.1 Customer and Account example ...13

3.2 Values and value types ...14

3.3 Objects and object types ...15

4 Objects and Values in Modeling..17

4.1 Implementation techniques ...17

4.2 The Immutable Object approach...18

4.2.1 The Copy-On-Write Approach ..19
4.2.2 Client-Side copy...19
4.2.3 The Body/Handle idiom...20

4.3 Programming languages..21

5 Project Experiences...23

5.1 GeBOS ... 23

5.2 Geo ... 24

5.3 KMU Desktop .. 24

5.4 Summary .. 24

6 Related work..25

6.1 User defined data types in C++.. 25

6.2 Smalltalk .. 26

6.3 Java... 26

6.4 The proposed CORBA standard for “Objects By Value”.. 27

6.5 Other distributed systems... 27

7 Conclusions ..29

References ..31

$EVWUDFW

Objects and values are fundamental yet complementary concepts of software system modeling and
implementation. However, in the context of large object systems, modeling and implementing value
types has received no sufficient attention. Our experiences show that proper understanding of value
types can ease programming and improve performance of such systems significantly. In this paper, we
discuss the impact of value types on object-oriented system design, implementation, and performance.
We discuss several implementation techniques that let us introduce value types into systems imple-
mented in mainstream object-oriented programming languages.

Dirk Bäumer, Takefive Software AG. Eidmattstrasse 51, 8032 Zurich, Switzerland.
Email: baeumer@takefive.ch

Dirk Riehle, UBS AG, Ubilab. Postfach. CH-8098 Zurich.
E-mail: Dirk.Riehle@ubs.com or riehle@acm.org

Wolf Siberski, RWG GmbH. Räpplenstraße 17, 70191 Stuttgart, Germany.
E-mail: Wolf.Siberski@rwg.de

Carola Lilienthal, University of Hamburg. Vogt-Kölln-Str. 30, 22527 Hamburg, Germany.
Email: Carola.Lilienthal@informatik.uni-hamburg.de

Daniel Megert, UBS AG, Ubilab. Postfach. CH-8098 Zurich.
E-mail: Daniel.Megert@ubs.com or Daniel.Megert@acm.org

Karl-Heinz Sylla, GMD. Schloß Birlinghoven, 53754 Sankt Augustin, Germany.
E-mail: sylla@gmd.de

Heinz Züllighoven, University of Hamburg. Vogt-Kölln-Str 30, 22527 Hamburg, Germany.
Email: Heinz.Zuellighoven@informatik.uni-hamburg.de

&KDSWHU��

,QWURGXFWLRQ

Objects and values are complementary modeling and implementation concepts, used in every modern
object-oriented software system. Frequently, the concept of value in the context of object-oriented
systems is reduced to mean “primitive data types” like integer, float, or string. Yet, the wealth of re-
search and practice on applicative systems demonstrates that values are powerful modeling and im-
plementation concepts, which offer many advantages over objects.

The most prominent advantage of values over objects is that values are side-effect free. Since values
cannot be referenced, they cannot be shared in different contexts, omitting many of the side-effect
problems that haunt large object systems. From this primary property of values, many secondary
properties can be derived that ease their handling in such diverse domains as serialization, persistence,
querying, distribution, and concurrency. These properties, illustrated in section 2, can significantly
ease system design and implementation as well as increase system performance.

So-called “pure” object-oriented programming languages and systems suggest to model and imple-
ment everything as an object. Our experiences in a number of large-scale projects suggest that this
approach is counterproductive, if not outright harmful. In our projects, we therefore do not only work
with object types, but also with domain-specific value types to overcome the problems a naive object
model causes.

In this paper, we analyze the properties of values in the context of large object systems. We motivate
how value types help make a system more understandable and how they help increase performance.
Finally, we show how value types can be implemented in a number of different ways, targeting differ-
ent mainstream programming languages and systems.

Section 2 provides a number of motivating examples for using values in large object systems. Section
3 describes the properties of value types in object systems and compares them with object type prop-
erties. Section 4 analyzes the design and implementation space of value types in object systems and
provides several implementation techniques. Section 5 reports on our experiences with using value
types in object systems in a number of different large projects, mainly from the banking domain. Sec-
tion 6 presents related work and analyzes how values have been handled so far in mainstream pro-
gramming languages and systems. Section 7 concludes the paper.

&KDSWHU��

0RWLYDWLRQ

We now motivate the use of values in object-oriented systems by showing the problems a naive ob-
ject-oriented approach typically causes. This encompasses both the general problem of side-effects, as
well as design, implementation, and performance problems in such diverse domains as distribution,
serialization, and persistence.

�����0RQHWDU\$PRXQW�H[DPSOH

In the banking domain, MonetaryAmount is a fundamental abstraction. It provides a currency and an
amount. The currency is typically represented as a three-letter string like “USD”, “DEM”, or “CHF”.
The amount is typically represented as a double floating point number. An example use of Mone-
taryAmount is an Account class, which models its balance using instances of the MonetaryAmount
abstraction.

The standard approach is to model MonetaryAmount as a class, so that a concrete monetary amount
like “5.00 CHF” is represented as an object. Assume now, that MonetaryAmount is a class that pro-
vides operations, which let clients alter the state of a monetary amount object. An account object,
when asked for its balance, returns a monetary amount object. If the object references hold by the cli-
ent and the account object point to the same monetary amount object, the client might alter the ac-
count’s balance by changing the amount object, thereby encompassing all restrictions the account
object might have imposed on changing its balance. This is the problem of side-effects through
aliasing.

To overcome this seemingly technical problem, a number of solutions can be applied. For example,
account objects might always return copies of their balance object. Or, a Body/Handle idiom based
implementation of amount objects might copy their body upon first write access. Or, the amount ob-
ject’s interface might only provide operations that prohibit altering its state.

All these specific solutions point to a common theme: MonetaryAmount is best modeled as a value
type rather than as an object class. The next section discusses properties of value types and value se-
mantics in object-oriented systems. Here, it suffices to emphasize that values do not suffer from side-
effects, because conceptually speaking, they have no alterable state. Typically, they are implemented

10 2 Motivation

as immutable objects, but this need not always be the case (see the section on implementation tech-
niques for value types).

�����3HUIRUPDQFH�FRQVHTXHQFHV

Modeling abstractions like MonetaryAmount as side-effect free value types has a number of advan-
tages compared to modeling them as object types.

In distributed systems, object references might cross process boundaries. If not taken care of properly,
an object constellation might occur in which an account object references its monetary amount object
in a different process. This might cause frequent cross-process calls, significantly reducing perform-
ance. While obviously a naive approach, many products on the market and many publications suggest
a fully transparent approach to distribution. If monetary amounts are modeled and implemented as
values rather than objects, they can always be copied with their enclosing objects, thereby preventing
performance degradation.

In distributed systems, a number of different approaches are known to overcome these problems. For
example, parameters may be passed using call-by-visit, or objects may be made immutable, or systems
might provide elaborate object migration schemes where not only single objects but full object graphs
are migrated in to order reduce the number of cross-process calls. Making value types explicit in dis-
tributed systems provides a conceptually clean argument for many if not all aspects of these ap-
proaches.

When using multithreading, modeling with value types either reduces or fully avoids locking over-
head (and related resource consumption problems). Conceptually, values have no alterable state, so
they can be implemented as immutable objects, avoiding the need for locking. Other implementation
techniques (see section 4), at least partially reduce the problem: if a value is represented as an object,
copy semantics can be assumed, avoiding locking overhead. If a value type is implemented using the
Body/Handle idiom, the locking overhead can be avoided at least for the client.

When serializing objects, i.e., turning them into passive data representations, the serialization algo-
rithm must cater for cyclic references between objects. Every check, whether an object reference in-
troduces a cycle, slows down the execution of the serialization algorithm. If it is clear than an entity,
represented as an object, is conceptually a value, it need not be taken care of as a possible cyclic ref-
erence. Rather, the value can be directly written to the buffer. For every value, the check for cyclic
references is omitted. Because the number of “value objects” in a system can be very high (see expe-
rience section), typically much higher than the number of regular objects, performance can increase
significantly.

More importantly, there is no need to maintain object ids for values. This makes the data buffer foot-
print of the value smaller than the one of a comparable object. The value can be dumped directly from
main memory, without further analysis of its structure and without having to check for embedded ob-
ject references.

These advantages apply primarily to lightweight values, i.e., values with a small implementation state.
Heavyweight values compromise these advantages, because they might be implemented based on ob-
ject references that need to be followed. In addition, serializing complex object graphs with many
equal values might have an unexpectedly large buffer footprint, if the values are heavyweight and
copied rather than referenced within the buffer.

When making objects persistent, be it in a relational or an object database, objects incur additional
management overhead. In relational databases, every object, as small as it may be, typically requires
putting it into a table of its own. Subsequent activation causes costly joins, degrading performance

2.2 Performance consequences 11

once more. If it is clear that an object is conceptually a value, it can be embedded efficiently within its
enclosing object. Then, the value can both be read and written together with its enclosing object. The
object, and all its value attributes, may be maintained as a single tuple in one table rather than spread
over several tables.

Many database systems today offer functionality that points in this direction. For example, some data-
bases like Sybase or Oracle extend the set of generally accepted value types (integer, string, etc.) with
further value types like date and time, which are typically not considered values but rather objects.
These new value types are directly embedded as part of a traditional database entry or an object
mapped on such an entry. Being explicit that these are value types, and letting users introduce their
own value types, can significantly boost performance for the reasons just given.

Again, these arguments primarily apply to lightweight values. Heavyweight value types might require
their own table, much like objects do. It becomes more difficult, if values are to be treated polymor-
phically. Then, they either need to be referenced, causing possibly costly joins like regular objects, or
they are stored as a binary large object block (blob), which prevents querying them.

When querying relational databases, value types are also of help. They simplify queries and make
efficient index generation possible. If, for example, the monetary amount of a class Account is mod-
eled as an object, an SQL query like select from Account where MonetaryAmount = ‘100 SFR’

has to be realized as a join of the tables Account and MonetaryAmount . Furthermore it is impossible
to use the standard indexing mechanism of a relational database engine to create a MonetaryAmount

index for the table Account . This causes further performance degradation.

These examples illustrate that modeling with value types where adequate can significantly improve
the performance of object-oriented software systems in a wide area of technical concerns.

&KDSWHU��

2EMHFWV�DQG�9DOXHV

We now review the properties of objects and values as complementary modeling concepts. These two
concepts are at the heart of every modeling language, domain model, and system implementation.

�����&XVWRPHU�DQG�$FFRXQW�H[DPSOH

To better illustrate the use of values in the context of objects, we extend our initial example. In the
banking domain, we model customer information as an instance of class Customer, which is an object
type. Customer has two attributes, one called name, which is of value type PersonName, and (for sim-
plicity’s sake) one attribute of value type reference to object of class Account (object references are
values). Class Account, which is an object type, also has two attributes, one called balance, which is
of value type MonetaryAmount, and one called accountNo, which is of value type AccountNumber.
Figure 1 illustrates the example design.

Customer

account: reference<Account>

name: PersonName

Account

accountNo: AccountNumber

balance: MonetaryAmount

Figure 1: Design example

14 3 Objects and Values

�����9DOXHV�DQG�YDOXH�W\SHV

Values have four key properties V1-V4. We have taken these properties from MacLennan’s seminal
article on objects and values in programming languages [Mac82] and adapted them to the modeling
level.

• Values are abstractions (universals or concepts) which model abstractions from a problem do-
main.

• Values have no lifecycle (i.e., they do not exist in time, are not created nor changed nor deleted).

• Values have no alterable state; representations can only be interpreted, not changed.

• Values are referentially transparent (i.e., there are no side-effects of using a value on other parts
of the system).

Examples of values are integers, real numbers, strings, dates, social security numbers, currencies,
monetary amounts, account numbers, etc. Values in computing systems are instances of value types,
for example Integer, Float, String, Date, SocialSecurityNumber, Currency, MonetaryAmount, and Ac-
countNumber.

Properties V1 (modeling abstraction from some domain) and V2 (no lifecycle) apply to value types on
every level. Values live in an inaccessible “universe of values.” A key consequence is that values are
accessible to us only through representations, which may take on arbitrary forms. In fact, we only
learn about values through their representations.

Property V3 needs further explanation and some refinement. A value becomes accessible only
through its representations. For every value type, there can be any number of different representation
schemes, and for every value, there can be any number of different representations. For example, dif-
ferent representations of the value two are “2” and “two”. Typically, different representations serve
different purposes. Given knowledge of the respective representation schemes, both representations
can be interpreted as pointing towards the same intangible value two. The association between a rep-
resentation and its corresponding value cannot be changed. (We use “a representation” to denote both
an occurrence of a representation and the representation itself [WJ95]).

Property V4 eventually distinguishes values from objects. There are no references to values, because
there are only bindings of (conceptually) immutable representations.

In programming languages, value types are offered as so-called built-in types or (primitive) data types.
The most common examples are integers, floating point numbers, characters, etc. These value types
made it into programming languages very early, because they are the domain-specific value types of
engineering and mathematics (FORTRAN) and transaction-oriented business processing (COBOL).
We call them primitive value types, not so much because they are primitive in any respect, but be-
cause their standard representation schemes provide good constructs to build representation schemes
for other value types.

Given no specific programming language concept, value types have to be implemented as classes, for
example as classes Date, SocialSecurityNumber, or MonetaryAmount. From a conceptual point of
view, we are still dealing with value types, be they implemented as classes or not. We call an instance
of a value type a “value object”. Cunningham demonstrates the importance of treating value objects
properly: the information integrity of applications closely depends on handling value objects with
value semantics [Cun95]. We call value types which require implementation constructs like classes
non-primitive value types.

A particularly important value type is object identity. Every object has a unique identity, through the
representations of which it may be referenced. A reference is a representation of an object identity
using a specific representation scheme. Representation schemes may vary drastically, depending on

3.3 Objects and object types 15

their intended use (e.g. main memory addresses, remote references with location encoding, or globally
unique object identifiers).

The compiler-generated code (or the runtime system, or the virtual machine) must be able to directly
interpret at least one representation scheme for object identity (typically a memory address) in order
to invoke operations on the referenced object. Here, the need for providing ways to introduce new
representations of new value types or extending old ones becomes particularly obvious: Every distrib-
uted system and every object-oriented database introduces its own proprietary scheme for changing
and extending the semantics of the de-referencing process of object references. A coherent approach,
defined on the programming language level, would help to do so in an efficient manner and avoid in-
tegration headaches like those of distribution with databases.

Values are frequently implemented with “copy semantics”, which means that they are always copied
so that no referential integrity has to be maintained. However, this is a particular implementation
technique, and other techniques could be used equally well (see section on implementing value types).

�����2EMHFWV�DQG�REMHFW�W\SHV

Objects exhibit the following properties O1-O4 (again adopted and adapted from [Mac82]):

• Objects are representations of phenomena from a problem domain.

• Objects have a life cycle (i.e., they exist in time, can be instantiated, changed, and deleted).

• Objects have identity that unambiguously denotes them (thus, they can be referenced).

• Objects can be shared, which is a consequence of that objects can be referenced.

Examples of objects are ubiquitous. Objects are instances of classes. A class is the abstraction from
several similar phenomena; it defines what can be done with its instances. We do not discuss object
properties in general, but only compare them with value types.

The phenomenon an object represents may be tangible or intangible. Problem domains may both be
technical or business domains (property V1 and O1). Both objects and values (and classes and value
types) are modeling concepts (i.e., they are not restricted to implementation).

While values exist independently of time in an invisible universe of values, objects do exist in time,
independently of whether these objects are representations of tangible or intangible phenomena
(properties V2 and O2). As a consequence, one needs to manage the life cycle of objects, defining
what it means for an object to come into existence, change over time, and be eventually destroyed.
The importance of life-cycle management is exemplified by the existence of standards (e.g. the
CORBA life-cycle service [OMG95]). No such complications exist for values.

Because objects exist in time, they can be distinguished from each other by their identity (property
O3). A value, in contrast, has no identity, because there are only occurrences of representations,
which are never identical (property V3). Representations of values, of course, may be equal under a
given interpretation, so that two different representations may denote the same value.

Object identity is a value type of particular importance (see previous subsection). By means of object
references, objects can be shared and accessed from different contexts (property O4). On an imple-
mentation level, the possibility to share objects is an important concept for reuse and integration, but
also a source of major headaches (side-effects through aliasing). No such concepts and problems exist
for values (property V4).

Objects have an object state, which can described as a set of attributes. An attribute has a name and a
value that is bound to the name at any point in time. An object implementation refers to an attribute

16 3 Objects and Values

using its name. Accessing the value part of an attribute given its name must be directly supported by
the programming language of a given implementation.

&KDSWHU��

2EMHFWV�DQG�9DOXHV�LQ�0RGHO�
LQJ

In software development, we can distinguish at least three different types of models: domain analysis,
system design, and implementation models. As we have illustrated, objects and values are not just
implementation concepts defined by programming languages, but modeling concepts that can (and
should!) be used in domain analysis and system design as well.

There is no fail-safe technique to decide whether some tangible or intangible concept is of a value or
object type. The properties of objects and values, which we have listed above, characterize what it
means for some concept to be an object or a value, after it has been decided to model it as such. The
modeling decision itself is always a pragmatic one, driven by questions like: How do users handle this
particular concept (analysis model)? How many instances are likely to exist (design model)? How
heavyweight is its default representation (implementation model)?

In fact, different models may define a concept to be of different types. A good example is the concept
of Address. Conceptually, an address is a value, and if a person moves, it is not that an address
changes, but rather that the person moves to another address. Thus, in the analysis model, Address is a
value type. However, an address is not a lightweight abstraction, so not only modeling Address as a
value type, but also implementing it with full copy semantics, might cause performance penalties.

An equally tricky example is the concept of Collection. In principle, collection types like Set, Map,
and Array are higher-level constructed value types. Implementation-wise, every object system we
have seen implements them as objects.

While no hard rules exist, and every decision must be done pragmatically, our experience shows that
value types are better reserved for lightweight abstractions.

�����,PSOHPHQWDWLRQ�WHFKQLTXHV

Most object-oriented programming languages do not directly support the implementation of value
types. One reason might be that they tend to have escaped the attention of the programming language

18 4 Objects and Values in Modeling

designer, because they were focusing on objects. Another reason, perhaps more important, is that
there is no single best implementation of value types. For example, is not always appropriate to use
copy semantics, because heavyweight values might slow down the system and memory consumption
might get too high.

If an object-oriented programming language or system does not provide direct support for value types,
they must be implemented as classes. Different implementation techniques can do this in different
ways, serving different needs and different purposes. We can categorize the different implementation
techniques along the following two dimensions:

How to ensure value semantics of an object. The implementation techniques of this dimension can be
subdivided into two major categories: (1) Immutable objects (i.e., objects whose state cannot be
changed). (2) Copy-On-Write objects, which provide a mechanism that ensures that the value object
will be copied before a mutating operation is applied. This approach guarantees that two clients A and
B of the same value object V cannot incidentally change each other’s state through changes to the
value object V. Thus, changes to value objects solely have an effect on the client that invoked the op-
eration.

How to make best use of a specific programming language. The major differentiation criterion here is
the method of how objects are created. Languages like Java and Smalltalk only support dynamic ob-
ject creation (i.e., the object is allocated on the heap). C++ also supports the concept of static object
creation. Static object creation means for clients that the value type is realized as an embedded object,
and it means for operation arguments that they will be passed on the runtime stack rather than dy-
namically allocated on the heap. In the following sections we refer to heap allocated values as dy-
namic values, and to values created on the stack or embedded into other objects as static values.

This section reviews different implementation techniques to realize value types in object oriented
systems. With each implementation technique, we provide a list of advantages and disadvantages in
order to ease choosing the best one given a set of concrete requirements. The following sections are
structured according to the two dimensions described above.

�����7KH�,PPXWDEOH�2EMHFW�DSSURDFK

Immutable objects are a simple and effective implementation technique to realize value types in ob-
ject oriented systems. An immutable object is an object whose state may not be changed, because is
does not provide any operation to manipulate it, or (low level) operations, which try to change the
object’s state, will result in a runtime error. Immutable objects can be implemented either statically or
dynamically.

The advantage of immutable objects is the guarantee of freedom from side-effects, and the clear im-
plementation of the concept of value types. Additionally, in multi-threaded environments, no locking
of the value object is needed, because the value never changes.

Its disadvantages are the object creation overhead, and increased memory consumption due to an in-
creased number of objects. If an immutable object is created statically, (i.e., allocated on the runtime
stack or embedded in the client object), an additional disadvantage is that polymorphism is lost
[Str97]. If immutable objects are created dynamically, an additional disadvantage is that a garbage
collector becomes mandatory.

Flyweights help resolve some of the disadvantages of the naive immutable object approach. A fly-
weight is a shared object with no extrinsic (i.e., context-dependent) state [GHJV95]. Consider the ex-
ample of adding the monetary amount of “CHF 3.00” to the monetary amount of “CHF 5.00”. Rather
than directly creating a new value “CHF 8.00”, the add operator of the value object “CHF 5.00” re-

4.2 The Immutable Object approach 19

quests the “CHF 8.00” value object from a value manager (flyweight factory in [GHJV95]). This
manager might reuse an existing “CHF 8.00” object or choose to create a new one if it doesn’t yet
exist.

Flyweights have the prime advantage of reducing memory consumption to the minimum. It is guaran-
teed that for every value, there is at maximum one value object that represents it. From this, another
advantage follows: Comparison for equality of two value objects can be reduced to comparison for
identity (two structurally equal value objects are guaranteed to be identical), so performance in-
creases.

Using flyweights, creation of value objects becomes more expensive, because retrieving the value
object requires at least one additional associative lookup. Particularly for complex value types (value
types with further embedded value types), the calculation of the hash value and the comparison of two
value objects by the value manager might cause a slow-down.

Also, immutability of value objects sometimes turns out to hinder optimal performance. Consider the
following example: an associative collection (e.g. a Java hashtable) manages a list of immutable
MonetaryAmount value objects. To increase each monetary amount by “CHF 5.00”, the following
code sequence is typical for Java:

Hashtable aMonetaryAmountMap = new Hashtable();
...
MonetaryAmount oldValue = (MonetaryAmount)aMonetaryAmountMap.get(aKey);
aMonetaryAmountMap.put(aKey, oldValue.add(5));

The problem associated with the code sequence is the double associative lookup. First, to get the
value from the map, and second, to write the value back into the map. It would be desirable to just
write:

((MonetaryAmount) aMonetaryAmountMap.get(aKey)).add(5);

This code sequence manipulates the value in place, thereby omitting the second associate lookup to
put the value back in place. This problem can be solved by either implementing special classes (e.g.
collections, iterators, and converters), which know that they are dealing with values, or by realizing
value types as normal objects. But then, there must be a mechanism which ensures that value objects,
which are referenced more than once, will be copied before the manipulating function is called. Oth-
erwise, value semantics will be lost.

�������7KH�&RS\�2Q�:ULWH�$SSURDFK

Copying the value object upon write access can take place in one of two places. First, we describe a
solution where the copying responsibility is located at the client side. Then, we show how the
Body/Handle idiom can be used to delegate the responsibility to the value itself.

�������&OLHQW�6LGH�FRS\

The simplest solution is to impose the obligation to maintain value semantics on the client. Then the
developer of a value type only needs to implement operations to copy the object, and the client must
ensure that the value semantics are maintained. Typically this means making a copy before changing
the value object. The client must know what it is doing and when to perform this copy.

The solution can be used both for static and dynamic object instantiation. Depending on the chosen
method, the class must offer different operations. If the values are statically allocated (C++), the copy
constructor and the assignment operator have to be implemented. If the values are dynamically allo-
cated on the heap, they must provide a deep-copy operation.

20 4 Objects and Values in Modeling

The primary advantage of this approach is that it can be applied to classes, which have not been de-
signed as value types from scratch. The only functionality the class must offer is a copy operation (see
above). Its clear disadvantage is that it is not fail-safe but relies on a disciplined use by the client pro-
grammer. Nothing specific can be said about its performance. The memory consumption will be me-
diocre due to many redundant copies.

�������7KH�%RG\�+DQGOH�LGLRP

The problem of changing the reference before the referenced object will be manipulated can be solved
through an additional indirection. This indirection is typically implemented by using the Body/Handle
idiom [Cop92]. This idiom suggests implementing an object in two halves, the body, and the handle.
Clients always hold a reference to the handle, while the handles reference the body objects. The ac-
tual state of the value object is maintained by the body, with the handle only mediating the access to
it. Normally, the Body/Handle idiom is combined with a reference counting mechanism. In this case
the body carries a reference count, typically an integer, telling how many handle objects hold a
pointer to it. If a mutating operation is called on the handle, and the reference count of the body is not
equal to one, a new body is copied from the old one. Furthermore, the reference count of the old body
is decreased by one, the reference count of the new body is set to one, and the body-pointer of the
handle is set to the new body. Then the mutating operation is delegated to the new body.

To ensure that the handle cannot be referenced more than once (which obviously violates value se-
mantics), it must be copied before it can be passed as an argument to an operation, or when the object
holding a reference to it is duplicated. These situations are identical with the situations in which a
value object without the body handle concept itself has to be duplicated. So the usage of the
Body/Handle idiom is useful only if the copy process of the handle object can be automated. There-
fore this solution is predominantly used in C++ where the handle can be implemented as a static ob-
ject. The new operator of the handle class must be private to avoid the instantiation of dynamic han-
dles. Additionally the constructor, copy constructor, destructor, and assignment operator must be im-
plemented to manage the reference count mechanism correctly. We know of no constraints for the
implementation of the body class.

The advantage of this solution is that it is well balanced. Both memory consumption, if the body is
realized as a flyweight object, and the performance for read operations are optimal. Merely the per-
formance for write operations is mediocre. In C++, this solution has the advantage that garbage col-
lection can be implemented easily using the reference counting mechanism of the Body/Handle idiom.
Using reference counting for implementing garbage collection is sufficient for lightweight values be-
cause no cyclic dependencies are allowed. An additional advantage is that the handle object can do
the locking of the value (the body object) in multi-threaded environments. Thus, the client code does
not need to take care of this. The Body/Handle idiom makes it furthermore possible to use statically
allocated values polymorphically. The only prerequisite is that all handle objects must be of the same
size. This is typically the case.

The major disadvantage of this approach is that references to value objects (for example in C++
MonetaryAmount& rValue or MonetaryAmount* pValue) must be forbidden by pro-
gramming conventions (see section 6.1). Otherwise side-effects become possible. Furthermore the
indirection of the Body/Handle idiom results in increased object access latency.

The following table summarizes the discussion about the different implementation techniques. The
symbols ++, +, o, and - have the meaning optimal, sub-optimal, mediocre, and poor.

4.3 Programming languages 21

Immutable objects
(as flyweight)

Client-side Body-Handle
(body as flyweight)

clear realization
of the concept

++ - +

memory
consumption

++ o ++

Performance to
create a new

value

exists as flyweight:
+

otherwise: o

o +

Performace when
using a value

++ ++ read: ++

write: o

Usage in
collections

o ++ ++

Suggested
programming

language

Java

ST

(C++)

None C++

Table 1: Summary of the different implementation techniques

�����3URJUDPPLQJ�ODQJXDJHV

Programming languages might provide direct support for value types. For example, in [KS95], Koenig
and Stroustrup make an argument for the use of user-defined data structures. Their argument resem-

22 4 Objects and Values in Modeling

bles ours, except that they view the need for small data structures from a programming language per-
spective.

How might language support for value types look like? To the user, it would look like he or she is
provided with first class user-defined value types, which can be handled much like integers and
strings are handled naturally in most programming languages.

Another solution would be to enhance a language’s type system so that it becomes possible to ensure
the desired value properties. The developer provides an implementation and is sure that a client is un-
able to exploit the object properties of the representation. The type checker would treat any such at-
tempt, e.g. the attempt to obtain a reference to the representation, as a compilation error. It depends on
the programming language how much has to be done for this approach. The range of changes needed
reaches from adding just one operator to introducing a new keyword value (type).

The implementation of such a feature might use any of the aforementioned approaches, most notably
immutable objects, possibly provided as flyweights, and objects, with the copy mechanism provided
by the objects themselves. The last approach can either be realized through the Body/Handle idiom or
by the following mechanism: whenever a client calls a mutating operation on a value object, the ob-
ject first copies itself. Next it replaces the reference to it hold by the client to the new copy. Then the
original value object forwards the mutating operation to the copy. Please note that the needed lan-
guage support goes beyond the become: language mechanism of Smalltalk. become: in Smalltalk
changes all references to an object A to the reference of the object B, and, in some implementations,
every reference to the object B to the reference of the object A (two-way become).

It would be desirable, if the programming language definition not only introduced the concept of
value, but also lets developers provide implementation hints, which basic implementation technique is
to be used (in particular with or without flyweights).

&KDSWHU��

3URMHFW�([SHULHQFHV

We report on our experiences with value types from a number of large object systems.

�����*H%26

The GeBOS series of banking projects developed at RWG GmbH (Stuttgart, Germany) consists of
more than 3500 classes. It strongly relies on the concept of value type. Value types were introduced
after a first prototype for the investment business had been finished. The major reasons to introduce
value types were to avoid side-effects and to simplify the mechanism for storing objects in relational
databases. A domain value framework was developed which allows the simple addition of new do-
main specific value types to the system.

We chose Copy-On-Write as our implementation technique, considering it the most appropriate ap-
proach in C++, our implementation language. The implementation is a variant of the Body/Handle
idiom combined with reference-counted garbage collection. Furthermore, we implement the body
parts of frequently occurring values as flyweight objects.

Each domain value is able to give a description of itself. This is used to check the value for validity,
to provide a string representation of it, etc. The state of a business objects (except their relations to
other objects) is captured by lists of such values. This lets us provide features like editing or con-
straint checking in a generic way. Since its introduction the value framework has become more and
more important as a foundation of other subsystems. We use primitive value types like integer only
for the most basic operations like loop counters, but not for domain-specific computations. The last
achievement was the development of a new legacy system wrapper on the central mainframe system,
which receives and delivers its transaction data primarily as lists of domain values.

The GeBOS projects use a large number of different value types. We use general domain value types
like amounts, strings, identifications; specific date-related value types like day, month, year, and time
span; financial domain value types like monetary amount, account number, interest rate, stock quotes,
and interest due dates. Etc.

24 5 Project Experiences

�����*HR

The Geo system is a distributed software system developed at Ubilab, UBS (Union Bank of Switzer-
land). It is implemented in Java. Right from the beginning we have imposed a strict distinction be-
tween object types and value types, which we implement as immutable flyweight objects. We have
modeled and implemented many concepts as value types: time and date, object identifiers, resource
descriptions, any kind of symbol (for example, in the context of type descriptions), the whole excep-
tion hierarchy, and the full technical name hierarchy (file names, class names, package names, etc.).
On average, our performance analysis shows some slight slowdown in performance, about 5%, due to
the value management complexity. The number of objects has been reduced to 53% on average appli-
cation runs. The overall memory footprint has decreased by about 10%. This unexpectedly meager
reduction of the memory footprint is based on the large Java runtime system, which does not use
value types the way we have described (with the notable exception of the String class).

In the Geo system, our primary example applications are of technical nature. One exception is a three-
tier bibliography system, which introduces a number of value types specific to the bibliography do-
main. One set of examples are the field types (taken from the BibTeX definition) for fields in a bib-
liographic entry (the entries themselves are implemented as object types). Another set of examples are
the layout token types used to control the output of our formatting algorithms for generating reference
lists (like the one at the end of this paper). A final example is the set of symbol types for a regular ex-
pression parser.

�����.08�'HVNWRS

The KMU Desktop system is a workplace system for account managers in the corporate banking divi-
sion of UBS, developed by its IT division. Already in the conceptual phase of the project we made a
clear distinction between object and value types. The KMU Desktop PC-based client is implemented
in Smalltalk. It uses the immutable object approach for value types in general. For value types with a
small cardinality, it combines the immutable object approach with flyweights. The flyweight factory
is hidden in the implementation of our value type framework.

We provide most basic banking domain value types like currency, monetary amount, and interest rate.
In addition, we provide banking domain specific adaptations of primitive value types like string and
floating point number. Finally, we have introduced technical domain value types like object identifi-
ers.

�����6XPPDU\

In all of these projects, we have made very good experiences with the distinction between objects and
values. This includes all models: analysis, design, and implementation. We think that for large-scale
business applications the concept of value type and its distinction from object type is key for under-
standing a system and defining its overall performance.

&KDSWHU��

5HODWHG�ZRUN

We review the (implicit) use of value types in C++, Smalltalk, and Java, as well as in the proposed
“Objects By Value” standard of CORBA and distributed systems in general.

�����8VHU�GHILQHG�GDWD�W\SHV�LQ�&��

In [KS95] Koenig and Stroustrup state that “it was an explicit aim of C++ to support the definition
and efficient use of such [i.e., small concrete] user-defined data types very well”. Starting with the
typical built-in value types (characters, integers, floating point numbers), they list several lightweight
types as examples, which all turn out to be what we consider value types. This indicates that the
authors acknowledge the importance of value type support. The solution they provide is to allow pro-
grammers to declare variables of user-defined types like variables of built-in types, e.g.:

int i; // variable of type int (built-in integer)
Date d; // variable of type Date (user-defined)

In this example, d is not a reference, but directly bound to an object of type Date. This is definitely an
advantage compared with languages like Java where only references to user-defined types are possi-
ble.

Lets consider which of the properties of value types d fulfills. As we have seen on the implementation
level, we deal with value representations that have a lifetime. So the best we can expect concerning
timelessness (V2) is that we don’t have to worry about the lifecycle of these representations. C++ ful-
fills this property: the representing object is created when d becomes visible and is destroyed when d
goes out of scope.

Theoretically it depends on the interface design whether d is immutable (V3). Koenig and Stroustrup
suggest to handle user-defined data types with object semantics. They provide the following example:

class Date {
public:
[...]

Date& add_year(int n); // add n years
Date& add_month(int n); // add n months
Date& add_day(int n); // add n days

};

26 6 Related work

These operations do not only modify the date, but also return a reference to the date object, thereby
allowing side-effects.

It would be helpful to have a facility that prevents a value representation from being aliased. Such a
feature would make it possible to implement value types whose operations are guaranteed to be side-
effect free. A possible approach in the spirit of C++ is to introduce an operator alias(), which
is called when a reference is obtained. For value types the operator could be declared private to pro-
hibit aliasing. In the absence of this feature, one always has to adhere to programming conventions
(see section 4.2.2).

We conclude that C++ was designed to support small non-polymorphic object types very well but
lacks language support for pure value types.

�����6PDOOWDON

Value types also exist in Smalltalk. However, they can not be mapped directly to classes, but only to a
concept called literal constants as defined in [GR89]. A literal constant in Smalltalk is a description
of a constant object like a number or a string. There are five types of literal constants: numbers (e.g. 2,
-30.4), characters (e.g. $a, $b), strings (e.g. ‘this’, ‘that’), symbols (e.g. #flagOn, #flagOff) and arrays
(e.g. (1 2 3), (1 ‘food’ $s)). All these literal constants are implemented as immutable objects: they are
normally protected by the virtual machine, sometimes marked read-only, and the creation of new ob-
jects (i.e., #new, #new:) is forbidden. However, this does not apply for the classes Array and String of
which anyone can create new instances and manipulate them.

It is not a simple task to implement value types in a totally open and reflective system like Smalltalk.
We see three ways to implement them:

In our custom-provided superclass of all value types, we can have an attribute called is-
MarkedReadOnly, which is tested by each instance variable setting operation of the value type.

We can test the current value of an attribute for #nil. This allows lazy initialization of value objects,
which are composed of multiple value objects and/or basic Smalltalk objects. If the attribute is not
#nil, this indicates that someone tries to set it for a second time and appropriate action can be taken.

In some Smalltalk implementations like IBM VisualAge [Smi94, IBM95], there is an undocumented
private feature for marking an object read-only (#markReadOnly:). This is used to protect literal con-
stants, and can be used to implement immutable objects.

Which solution to choose depends on the complexity of a value type. However there is no way in
Smalltalk to fully protect an object from being manipulated.

�����-DYD

As a prominent programming language, which takes a rather hybrid approach, consider Java [AG96].
In Java, strings are instances of a class String, which is implemented as an immutable object with
Body/Handle separation and flyweight body objects. Thus, it provides value semantics. Unfortu-
nately, this has not been carried through to other value types. For example Date, Point, and Rectangle,
even though uniquely qualified to be implemented as value types, provide object semantics, with all

6.4 The proposed CORBA standard for “Objects By Value” 27

its described problems (see section 2). As a consequence, programmers must enforce client-side value
semantics, if they want to avoid these problems.

�����7KH�SURSRVHG�&25%$�VWDQGDUG�IRU�©2EMHFWV�%\�9DOXHª

The need for passing parameters by value in distributed systems is obvious (see section 2). Therefore,
the OMG issued a request for proposals to make this possible within the CORBA standard. This re-
sulted in a joint submission [OMG98], which introduces the concept of value type. Only instances of
value types can be passed by value. As in the past, instances of object types cannot be passed by
value.

A value type definition starts with the new keyword value. It consists of the declaration of an inter-
face and (optionally) a specification of the value representation. The representation specification al-
lows the ORB to transfer the representation to another context, possibly implemented using another
programming language. The new values are intended to be used as parameters but not as object attrib-
utes, because object state specifications are not part of the CORBA object model. The proposed
CORBA value types provide full subtype polymorphism. Value types have the following properties:

• Value types are not CORBA object types: they inherit (implicitly) from the new type
CORBA::ValueBase instead of CORBA::Object.

• Values don’t have an identity. When passed as parameters, a copy of the representation is created
in the receiving context.

• Values don’t have an object lifecycle: they aren’t created nor destroyed. The client does not have
to care about the creation and destruction of the representation copy.

It is not possible to create aliases to value instances on the interface level.

The only property that CORBA value types cannot ensure is immutability. This property is missing,
because the IDL provides no means to specify const operations (i.e., operations that do not modify the
instance). Concerning the C++ language mapping the authors considered to map all operations of
value types to const member functions. However, this would have introduced incompatibilities with
the existing object type mapping.

We consider some of the proposed features to be problematic. For example, it is allowed for a type to
inherit both from a value type and an object type, resulting in unclear semantics. Also the language
mappings were not designed to enforce a strict distinction between objects and values. On an imple-
mentation level, users of CORBA value types have to handle objects instead of values.

�����2WKHU�GLVWULEXWHG�V\VWHPV

Many distributed systems have devised concepts to address the performance problems illustrated in
section 2. From the simple immutable object approach, to design patterns like Flyweight, up to elabo-
rate object movement and parameter passing schemes, a number of remedies are known.

As a representative of this group of systems, we pick Emerald [JHLB88]. Emerald provides direct
support for object mobility in a number of different ways. Objects can be moved explicitly, using a set
of primitives defined for this purpose. Objects may be clustered and always moved together. Objects

28 6 Related work

may be moved implicitly, triggered by a specific parameter-passing scheme like call-by-move or call-
by-visit.

Many of the arguments made for object mobility functionality and their specific implementations can
be explained by the distinction of object and value types. Immutable objects are an excellent means
for increasing performance of lightweight objects in distributed and concurrent systems. Call-by-visit
is an excellent means for reducing the frequency of cross-process calls for embedded objects. While
all these concepts stand on their own, they frequently can be explained well using value types. Object
mobility and modeling with value types complement each other.

&KDSWHU��

&RQFOXVLRQV

Objects and values are the primary modeling concepts of modern software systems. Yet, in object-
oriented systems, values have gained no sufficient attention, to the extent that so-called “pure” object-
oriented programming languages and systems deny that they build on values as much as they build on
objects.

Our experiences with large object systems indicate that much can be gained from a clear understand-
ing of values in object systems and their appropriate application, both as a domain modeling and as an
implementation concept. General benefits, like freedom from side-effects, are complemented by tech-
nical benefits, like significant performance gains in distribution, concurrency, and persistence.

We present the key properties of value types in the context of object-oriented systems modeling. We
analyze the design and implementation space of value types in modern mainstream object-oriented
programming languages, and present implementation techniques. We discuss how proper modeling
with value types can increase system understanding and performance in a wide area of technical do-
mains. Finally, we present our experiences from a number of projects, which have made a clear dis-
tinction between object and value types.

Based on the analysis of value type properties, the consequences of their application in analysis, de-
sign, and implementation on system understanding and performance, and our project experiences, we
conclude that value types are fundamental to object system design and implementation. They signifi-
cantly help with issues of largeness by omitting many of the problems, a naive object-oriented ap-
proach causes.

5HIHUHQFHV

AG96 Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley,
1996.

Cop92 James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley,
1992.

Cun95 Ward Cunningham. “The CHECKS Pattern Language of Information Integrity.” In Pat-
tern Languages of Program Design. Edited by James O. Coplien and Douglas C.
Schmidt. Addison-Wesley, 1995. Page 145-156.

GHJV95 Erich Gamma. Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns—
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

GR89 Adele Goldberg, and David Robson. Smalltalk-80 The Language. Addison Wesley,
1989.

IBM95 International Business Machines Corporation. IBM Smalltalk User’s Guide, Version 3,
Release 0. International Business Machines Corporation, 1995.

JLHB90 Eric Jul, Henry Levy, Norman Hutchinson and Andrew Black. “Fine-Grained Mobility
in the Emerald System.” Readings in Object-Oriented Databases. Edited by Stanley B.
Zdonik and David Maier. Morgan Kaufman Publishers, 1990. 317-328.

KS95 Andrew Koenig and Bjarne Stroustrup. “Foundations for Native C++ Styles.” Soft-
ware-Practice and Experience 25, S4 (December 1995). Page 45-86.

Mac82 B. J. MacLennan. “Values and Objects in Programming Languages.” ACM SIGPLAN
Notices 17, 12 (December 1982). Page 70-79.

OMG95 Object Management Group. CORBAservices: Common Object Services Specification.
Framingham, MA: OMG, 1995.

OMG98 Object Management Group. Objects by Value. OMG document id orbos/98-01-01.
Framingham, MA: OMG, 1998

Smi94 David N. Smith. IBM Smalltalk: The Language. Benjamin/Cummings Publishing Com-
pany, Inc., 1994.

Str97 Bjarne Stroustrup. The C++ Programming Language. 3rd Edition, Addison-Wesley,
1997.

32 References

WJ95 Roel Wieringa and Wiebrien de Jonge. “Object Identifiers, Keys, and Surrogates: Ob-
ject Identifiers Revisited.” Theory and Practice of Object Systems 1 (2): 101-114.

8ELODE�7HFKQLFDO�5HSRUWV

94.6.1 Maffeis S, Bischofberger WR, Mätzel K-U: GTS: A Generic Multicast Transport
Service

94.9.1 Bischofberger WR, Kofler T, Mätzel K-U, Schäffer B: Computer Supported
Cooperative Software Engineering with Beyond-Sniff

94.9.2 Bäumer D, Bischofberger WR, Lichter H, Schneider-Hufschmitdt M, Sedlmeier-Scholz
V, Züllighoven H: Prototyping von Benutzungsoberflächen

94.10.1 Steiger P, Ansel Suter B: Minnelli Schlussbericht

94.10.2 Levy N, Hornstein T: Text-to-Speech Technology: A Survey of German Speech
Synthesis Systems

95.6.1 Riehle D: Muster am Beispiel der Werkzeug und Material Metapher

95.7.1 Riehle D, Schäffer B, Schnyder M: Design and Implementation of a Smalltalk
Framework based on the Tools and Materials Metaphor

97.1.1 Riehle D: A Role-Based Design Pattern Catalog of Atomic and Composite Patterns
Structured by Pattern Purpose

97.3.1 Brudermann R: GeoTransporter—Entwurf und Implementierung eines
Objekttransportes für das Geo-System

97.6.1 Mätzel K L, Schnorf P: Dynamic Component Adaptation

97.7.1 Barja M L: A Comparative Evaluation of OODBMSs

98.5.1 Marsura P, Riehle D: Design and Implementation of the Java Any Framework

Paper copies of Ubilab technical reports can be ordered from the mailing address on the first page or
by e-mail from its author using the scheme firstname.lastname@ubs.com. Most reports can also be
obtained as PostScript files via WWW (http://www.ubs.com/ubilab).

$EVWUDFW

Objects and values are fundamental yet complementary concepts of software system modeling and
implementation. However, in the context of large object systems, modeling and implementing value
types has received no sufficient attention. Our experiences show that proper understanding of value
types can ease programming and improve performance of such systems significantly. In this paper, we
discuss the impact of value types on object-oriented system design, implementation, and performance.
We discuss several implementation techniques that let us introduce value types into systems imple-
mented in mainstream object-oriented programming languages.

