1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Design Patterns, Frameworks,
and Components
A Practical Foundation for Object-
Oriented Software Architecture

Dr. André Weinand

Object Technology International, Inc.
andre_weinand@oti.com

1999 CHOOSE Forum on Object-Oriented Software Architecture

| ntroduction

Software development is still hard!

Our enemy is complexity, and our job is to kill it.
Jan Baan

Continuously evolving systems will become the norm
— “Design for Change and Evolution”
— “Make Change Your Friend”

Good architecture is essential!
— the organization of software systems

— the selection of elementsfrom
which such systems are composed

— theway in which those elements collabor ate

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-1




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Elements of Object Technology

OT provides a
Composition Model
spectrum of elements I l “Components’
to craft a system
D i
R Macro-
T Architectures
| — “Frameworks”
S | Micro-
[m— ,." \ Architectures
_\ ! — “Patterns”
O |y
| (| B | classes
O |y

1999 CHOOSE Forum on Object-Oriented Software Architecture

Overview

 Practicalintroduction to key concepts of OT
— design insightsinto a Browser Framework

» Showing a typical architectural evolution:

— prototype/sample application
O white-box framework
O black-box framework

O componentized system

Combining different OO techniques
— there is no “one size fits all”

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-2




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Background

» Comprehensive OO Systems
— ET++
— Taligent’'s CommonPoint
— framework for dynamic web pages (IFA WebDisplay)
— ultralight client infrastructure (OTI ULC)

» Played multiple roles
— framework ar chitect, implementor, client
— technical support
— mentor
— teacher

1999 CHOOSE Forum on Object-Oriented Software Architecture

The Problem

» Exploring and manipulating
hierarchically structureBomains
— navigating relationships Ul
— viewing/editing of a node’s contents | |

» Examples:
— file systems
— mail Domain
- Web
— program representation

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-3




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

The God

* A framework that...
— defines the browsing metaphor ul

¢ generically implements all
the “complex stuff”

— allows clients to focus on Browser
* domain definition Framework
* node content editors/viewers
Viewer Domain

— issimplel
« small number of concepts

®

1999 CHOOSE Forum on Object-Oriented Software Architecture

Origins of Browser Framework

» Taligent Hoops/cpProfessional
- C++IDE
— Components & Properties

» Taligent Workspace
— “People, Places & Things”
— InfoNodes & Viewers

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-4




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Domain Access

* Elements
— browseable entities

— datanodesin thedomain
— examples: afile, amailbox

voi d setProperty(String,

| Property getProperty(String)

| Property)

Elements haveroperties

— aspects of the browsable entities

— examples: mails in a mailbox, the file’'s contents
Elements provide dynamic data access API
Property kinds

— simple: Object, Boolean, String, Element

— indexed: ordered set of Elements

1999 CHOOSE Forum on Object-Oriented Software Architecture

Domain Model

* knows a root element
— the “portal” into a domain

* is the model in the Model/View architecture
— notifier for domain changes
— elementsfiredomain changes via model
O elements know their domain model
— notification specifies changed property
— Observersregister with domain model

1999 CHOOSE Forum on Object-Oriented Software Architecture

Domain

ents

2-5




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Viewer

* A Viewer ...
— isfed with input element
— presents properties of itsinput element
— createswidget hierarchy )
. input output
— Observes domain model for changes
— handles user interactions
— sends out selection change events

Viewer

e Standard Viewers exists
— Structureoriented Viewers
e Tree, List, Table
— Content oriented Viewer
e Text

1999 CHOOSE Forum on Object-Oriented Software Architecture

Pane - a Viewer's Container

installs Viewer dynamically based on its input

» adds more controls

optionally provides Ul to pick other viewers for the viewed
property

* tracks viewer selection changes input output

Viewer

Pane

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-6




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Browser - Pane’s Container

* implements browsing metaphor
* is fed with an Element

* manages panes

* defines wiring between panes
 defines layout between panes
» adds more controls

@ input

Browser

Viewér

Viewer

1999 CHOOSE Forum on Object-Oriented Software Architecture

Overall Presentation Architecture

 Hierarchical system of supervisors

» Pattern:
— Chain of responsibility

Application

| Workspace | | Workspace |

| Browser || Browser |

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-7




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Frameworks

A framework is a set of classes that embodies an abstract design for

solutions to a family of related problems.
-- Johnson & Foote ‘88

» What can be generically implemented?
— Application: manages wor kspaces
— Workspace: manages browsers
— Browser: manages panes and input distribution
— Panes: manages dynamical viewer switching
— Viewer: selection change notification
— DomainM od€l: change notification

1999 CHOOSE Forum on Object-Oriented Software Architecture

Frameworks (contd.)

* What needs to be custom application code?

— factory code:
« DomainModel: creating root element
» Application: creates workspaces
* Workspace: creates browsers, holds onto model
» Browser: creates panes

— various policieg/strategies:
« Browser: wiring and layout
¢ Panes: property to show, viewer switching

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-8




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Defining the Framework

» Separation of design from code
— define the “design” as Java interfaces in one package
— move “implementation details” into a separate package

» Motivation
— encapsulate volatile implementation details
behind stable interfaces
» make the difference explicit for clients
 convince clients to use interfaces but avoiding the implementations

— clients are very creative in taking advantage of
every implementation detail

— clients shouldn’t be forced into implementation inheritance!
* less flexible

1999 CHOOSE Forum on Object-Oriented Software Architecture

Discovering the Viewer Interface

» |nterfaces describe interactions
between the Viewer and the rest
of the system

* Another example:

— Elements Pane t Selection J
ISelection

— Properties TR
; IViewer A

— DomainM odels
Viewer

v v

IDomainModel |IElement
FDomainModeI W ( Element W

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-9




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Problems with Interfaces

* Interfaces cannot have default implementation
— cumbersomefor clientsto implement
O Providedefault implementationsin a separate layer
« difference between design (interfaces) and implementation remains
explicit!
* Solves another Problem:
— if clientsderive directly from an interface
¢ every interface change is a breaking change!

O introduce an abstract class asan insulation layer
on top of interfaces

« if interface has to be changed, provide compatibility
implementations there

1999 CHOOSE Forum on Object-Oriented Software Architecture

Example: Viewers Layering

IViewer Interfaces
domainChanged|() reuse of design
installlnPane() stable
isDirty() specifies public interfaces

T
AbstractViewer Abstract Implementation

insulation between interface and client
4 initially no implementation
|

DefaultViewer Default Implementation

installinPane() reuse of design and code
isDirty() less stable
specifies protected interfaces

.| Client Implementation
SourceViewer reuse of implementation
domainChanged() least stable

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-10




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

White-Box vs. Black-Box

Clients still have to subclass several framework classes:
— variousfactory methods
— Browser: layout, wiring
— Pane: property selection

O Introducing composition/configuration
instead of subclassing
— white-box frameworks
« promote flexibility
* based on inheritance, dynamic binding
— black-box frameworks
» promote ease of use
» based on composition, configuration

1999 CHOOSE Forum on Object-Oriented Software Architecture

Data Driven Configuration

Configuration based on simple
data description formdtAnything”
— nested key/value pairs
— extensible, but stable syntax
O “XML lite”
¢ but more compact, readable and editable...

Configuration mechanism used as an implementation detail of
certain framework hooks:
O it isalways possible to overrule the config mechanism

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-1




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Example: Browser Definition

ftitle “File Browser” # name of browser

/outputs{ “ListPane”}  # forward input to

/panes { # Pane definitions
/ListPane {

Iproperties { “children”}
/outputs{ “SourcePane” }

/ContentsPane {
Iproperties{ “contents” }

-'5:-'.:,1311-&;'". e: “ContentsPane”
} | =~=property: “content”
Nlayout { # layout for Panes L ot
Itype “vsplit” # vertical layout i
/members {
{/type “pane” hame “List” /weight 100 }
{/type “pane” hame “Source” fveight 200 }

}
}

1999 CHOOSE Forum on Object-Oriented Software Architecture

Communication Issues

» Closing the framework makes communication harder

* Example: Viewers
— Viewersare unawar e of each other
— one custom viewer wantsto talk to another custom viewer
 e.g. ListViewer with search results wants
to select text in TextViewer
* Framework has to support unanticipated interactions

O WireCommands
— custom viewer sends custom WireCommand

— framework distributes them along the wiring
against viewer targets
— dispatch method checks whether target is acceptable

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-12




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Componentizing the Framework

» Component Definition:

A component is a physical and replaceable part of a system
that conforms to and provides the realization of a set of
interfaces.

-- Grady Booch

» Components can be simple:
— no need for standardization or “marketplace”
— just application-specific core business assets

» Examples:

— Viewers
— DomainM odels

1999 CHOOSE Forum on Object-Oriented Software Architecture

Componentizing Ul Handlers

e Actions
— based on Swing Action
— specifiesthe action to be executed on a dynamic tar get
— argumentsare
e current selection
 current Viewer, Browser under focus
» Actions can be installed in different contexts:
— Pane control bar
— Browser menubar
— Browser toolbar
 Actions define properties for different Uls
— enable/disable state
— icon, labdl, tooltips

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-13




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components

Componentizing Viewers

» Tendency for lots of custom viewers
» Consolidation revealed:

— clientstypically changed only a few aspects of viewers:
¢ sorting and filtering

¢ rendering (how properties of a single element are drawn)

« action to execute for specific user-interaction
» Making viewers composable

— introducing functors: | Sorter, | Filter, IRenderer
O Fine-grain componentizing

— partscan beinstantiated via configuration
« dynamically linked implementation

[0 Configurable viewers without subclassing

1999 CHOOSE Forum on Object-Oriented Software Architecture

Example: Custom TreeViewer

» A single viewer can be customized to different uses without
subclassing

— heter ogeneous traver sal - enumerating children

« children property
— sorter

 sorting order

— rendering
 label property |/MWTreeViever {
X /class "com x. TreeVi ewer"
* Icon property /childrenProperty "vari abl es"
— actions

/sorter { } # no sorter

/renderer {/class "com x. M\yRenderer"}
/actions {

/ Doubl eCick { /class "com x. MAction" }
}

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-14




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Beyond Fine Grained Components

» Browser framework provides fine grain extensibility
— Viewers, Sorters, Filters, Renderers, Actions
— DomainM odels, Elements, Properties

» Typical applications have additional requirements
— grouping components
¢ an application extension is more than a single component
— moreflexibility for extensions
* new elements for existing models
* new properties for existing elements
« application specific extensibility

1999 CHOOSE Forum on Object-Oriented Software Architecture

Example: Application Extensibility

\/ uogsua1x;|‘
a9 uogsuema‘
o uo!sua:lxg‘
a UO!SUGJ,XE‘

"|ddy aseg

Application
PreferencePages
Wizards
Dialogs
Workspaces

| Browsers

Framework Dolné?érm?gsls

[ Properties

Viewers
Filters
Sorters
Renderers
Application — Actions
specific |: [222

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-15




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Discovering Initial Extension Support

» Setting up a “vertical” project structure
* Moving components to it

» Decoupling via interfaces
— [UIExtension, |M odelExtension, etc.

» Adding extension framework code
* Introducing theApplicationExtension

1999 CHOOSE Forum on Object-Oriented Software Architecture

Framework B c o
| DomainModel |
e | —
e | — =
| Application | |:|

Defining Extension Support

 ApplicationExtension defines
— gettersfor different aspects of a typical extension
¢ return new object
 or return selfthis)
— a “root” or “base” for all resource requirements

» Adding more extensibility to framework, e.g.:
— extending DomainM odels with new Elements
— adding factory objectsfor Browsersand Viewers
¢ e.g. factory object includes resource base

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-16




1999 CHOOSE Forum on Object-Oriented Software Architecture.
André Weinand: Design Patterns, Frameworks, and Components.

Conclusions

Good architectures have to support change and evolution

» “Component Thinking” enables flexible architecture

» Components can be simple!

1999 CHOOSE Forum on Object-Oriented Software Architecture

2-17




