
Mapping Objects to Tables

A Pattern Language

Wolfgang Keller
c/o EA Generali, Neusetzgasse 1, A 1100 Wien, Austria

Email: 100655.566@compuserve.com
http://ourworld.compuserve.com/homepages/WofgangWKeller/ ; http://www.sdm.de/g/arcus/

Abstract

Mapping Objects to Tables is a problem that has occurred as long as people want to program in an
object oriented language but have to use relational instead of object oriented databases for some
reasons. Mapping Objects to Tables is only one family of problems that occurs in object/relational
access layers. The whole context of object/relational access layers has been described by many
authors (see [Bro+96, Col+96]) and is subject of our own future work.

Introduction

Object-orientation and the relational model are different paradigms of programming. When objects
need to be stored in relational databases, the gap between the two different sights needs to be bridged.
If only data abstraction modules have to be mapped to a relational database, life is comparably easy
[Kel+97]. With full blown object models the concepts of object oriented programming have to be
mapped to relational table structures. These are:

• Aggregation,

• inheritance and polymorphism,

• associations between classes,

• and data types – smarter than SQL data types.

Each of the above concepts may be mapped using different solutions for the same problem. We will
describe each different solution as a separate pattern. This approach allows us to clearly demonstrate
the consequences of using a solution with respect to the general forces presented next. Mapping data
types requires a larger effort [Kär95] and may be treated as a pattern language of its own. We will
therefore leave it to future pattern mining work.

General Forces

• Performance: One of the major forces that you should take into account when mapping objects to
tables is performance. The way objects are mapped to tables has significant influence on the
number of database accesses that occur in a system. Database accesses that have to be executed
using hard disks or other external media are measured in milliseconds (10-3 sec.). Processor cycles
on the other hand are measured in nanoseconds (10-9 sec). It is therefore a good idea to waste a
few processor cycles and some RAM memory to economize on slow IO.

• Read versus write/update performance: The solutions we will present for various mapping
problems have different characteristics if it comes to read versus update/write performance. Some
mappings allow you to read everything needed in a single database access while it takes several
database operations to write the same object, due to the mapping used for inheritance. Therefore
be sure you know the frequency of read and write/update operations before you commit yourself
to a certain table design.

• Flexibility and maintenance cost: Sometimes you might want to use a database mapping in a
prototyping process. In this case flexibility is more important than performance as you will often
insert or delete attributes, add or delete classes and restructure your class hierarchy. Once the
hierarchy and classes become stable you may want to switch to a mapping with optimal
performance.

• Performance and redundancy versus maintenance cost and normal forms: The relational calculus
helps you eliminate redundancy using normal forms and factorization. Relational database
applications on the other hand show best performance with a minimal number of accesses to the
database. The expensive factor is seek time for a certain record and not bandwidth for reading the
data from a disk once they are located on the disk. Hence these applications perform best if they
are able to retrieve all data needed for a use-case with a single access to the database or if they hit
a cluster of data.

• Accesses to the database can be reduced by eliminating factorization and ignoring normal
forms – which has negative consequences on the maintainability of the application [Kel+97].

• Clustering can be influenced by database administration.

Maintainability of a data model and performance are two conflicting goals. Therefore: The harder
you optimize your data model for performance, the higher your maintenance cost in case of
changes to the application. Redundancy and all kinds of anomalies, normally prevented by the use
of normal forms, have to be taken care of by maintenance.

• Space consumption versus Performance: There are mappings that use no surplus database space
(fields with null values and the like) and others that leave large portions of a database record
unused. It is not surprising that the worst space hogs are often the fastest performers.

• Query processing: There are two conflicting purposes, data have to serve in a business
information system.

• Data have to be ready for online transaction processing with good performance. This implies
restructuring of data for optimal performance. See [Kel+97] on how to optimize table schemes
for good performance.

• Data have to be ready for data warehouse purposes. This implies that data have to be
represented in a form that is well suited for ad hoc queries. Normal forms, no redundancy and
maximum factorization serve this purpose.

Building a data warehouse often implies separating the queryable data from the data needed for
fast online processing. If you design a table mapping for objects, check whether the application is
a data warehouse or an online processing application.

• Application style: Besides database driven business information systems there are other types of
information systems. Using a relational database as persistence mechanism for some of these
might end in disaster. Some examples are.

• CAD applications: CAD applications are used to manipulate large sets of very complex,
interrelated objects. Transactions are long. A CAD designer typically checks out a design,
works on it for hours and then checks it back into some data store. Building such applications
on top of a relational database, using an object relational database mapping is doomed to fail.
Simple pointer dereferencing in working storage is faster by a factor 106 than joins. Relational
databases are not intended for very long transactions with zero collision rate.

• CASE Tools: CASE tools have characteristics similar to CAD systems. IBM’s negative
experience with the AD/Cycle repository is a prominent example of what happens if such
applications are implemented on top of a relational database.

• Any check in / check-out persistence applications: The above example can be generalized to
applications that use complex, interrelated objects, allow direct manipulation and allow the
user to check them out of a database for a longer period of time. Such systems should be built
using non-relational data stores.

Check you do not build one of the above applications before you map objects to relations.

• Integration of legacy systems: Business information systems are seldom developed from scratch.
Instead, you have to connect to legacy systems, which you are not allowed to touch. In our case
you might have to build objects on top of legacy data. In this case you have to use whatever
mapping patterns that fit your legacy data. You may then apply the consequences sections of the
patterns. They inform you about performance implications of the mappings you have to use.

Roadmap of the Pattern Language

This pattern language is structured according to the problem structure. There are alternative
solutions (patterns) for each of the three problems: Mapping aggregation, inheritance and
associations.

Mapping Objects to Tables

Patterns for Mapping Aggregation Patterns for Mapping Inheritance Patterns for Mapping Associations

Single Table Aggregation

Foreign Key Aggregation

One Inheritance Tree One Table

One Class One Table

One Inheritance Path One Table

Objects in BLOBs
maps Aggregation, Associations, and Inheritance

Foreign Key Association

Association Table

Cookbook Aspect of the Pattern Language

This pattern language presents alternative solutions to the three main problems you encounter,
when mapping objects to tables. Depending on your project's requirements you might want to
optimize your mapping for flexibility, easy maintenance, low database space consumption, or

performance. To give you a first impression, we have listed the patterns together with their
significant consequences in a matrix. The matrix will help you with a first guess where to start
reading. But the matrix cannot provide a detailed technical discussion like the patterns.

PerformancePattern

Write/
Update

Single
Read

Polymorphic

Queries

Space
Consumption

Flexibility,
Maintainability

Ad-hoc
Queries

Single Table Aggregation + + * + - -

Foreign Key Aggregation - - * + + +

One Inheritance Tree One
Table

+o +o + - + +

One Class One Table - - -o + + -

One Inheritance Path One
Table

+ + - + - -

Objects in BLOBs +o +o o + - -

Foreign Key Association - o * + + +

Association Table - o * + + +

+ good, - poor, * irrelevant, o depends, see detailed discussion

Patterns for Mapping Aggregation

The question, when to use aggregation and when to use associations is very hard to answer at
the object oriented modeling level (OOA). For our purposes the answer to this question is
mostly influenced by performance or flexibility considerations. You may use Single Table
Aggregation, which is the natural way to map aggregation. You may also use Foreign Key
Aggregation which is the usual way to map 1:n associations and is also discussed as Foreign
Key Association in the section on mapping associations.

Pattern: Single Table Aggregation

Abstract

The pattern shows how to map aggregation to a relational data model by integrating all aggregated
objects’ attributes into a single table.

Example

Consider the following object model:

String Name
AddressType Address
......

Customer

AddressType

Employee

String Street
String City
Char[20] ZipCode
String State
.....

String Name
.......
AddressType InvoiceAddress
AddressType DeliveryAddress

Figure 1: An AddressType aggregated by more than one other types

Problem

How do you map aggregation to relational tables?

Forces

• Performance: For optimal performance the solution should allow to retrieve an object with one
database access without any join operations. Database accesses should fetch a minimum number
of pages to economize on I/O bandwidth.

• Maintainability: For optimal maintainability, aggregated types, that are aggregated in more than
one object type, should be mapped to one set of tables instead of being strayed identically across
many different spots in the physical data model. Normalization should be used at the data model
level to ease maintenance and ad hoc queries.

• Consistency of the database: Aggregation implies that the aggregated object’s life cycle is
coupled with the aggregating object’s life cycle. This has to guaranteed by either the database or
application code

Solution

Put the aggregated object's attributes into the same table as the aggregating object’s.

Structure

AggregatingObject

AggregatedObject

Aggregating Object's Table

Attributes

......

Aggregated Object's Attributes

is mapped to

is mapped to

The AggregatingObject is transformed to a table of the physical data model. The AggregatedObject’s
Attributes are integrated into that table.

Example Resolved

To resolve our above example we look at the table created for the Customer object. The
InvoiceAddress and the DeliveryAddress are both integrated into the Customer’s database table.

Customer

AddressType

String Street
String City
Char[20] ZipCode
String State
.....

String Name
.......
AddressType InvoiceAddress
AddressType DeliveryAddress

CustomerTable

Name char(50)

......

InvAdrStreet char(50)
InvAdrCity char(50)
InvAdrZipCode char(20)
InvAdrState char(50)

DelAdrStreet char(50)
DelAdrCity char(50)
DelAdrZipCode char(20)
DelAdrState char(50)

...........

Figure 2: Mapping an aggregated object type into the aggregating object’s table

A prefix is used to distinguish the attributes. This is similar to the resolution of structures in C++,
using a dot notation (like Customer.DeliveryAddress.Street).

Consequences

• Performance: The solution is optimal in terms of performance as only one table needs to be
accessed to retrieve an aggregating object with all its aggregated objects. On the other hand, the
fields for aggregated objects’ attributes are likely to increase the number of pages retrieved with
each database access, resulting in a possible waste of I/O bandwidth.

• Maintenance and flexibility: If the aggregated object type is aggregated in more than one object
type, the design results in poor maintainability as each change of the aggregated type causes an
adaptation all of the aggregating object types’ database tables.

• Consistency of the database: Aggregated objects are automatically deleted on deletion of the
aggregating objects. No application kernel code or database triggers are needed.

• Ad-hoc queries: If you want to form a query that scans all AddressType objects in the database,
this is very hard to formulate.

Implementation

• Naming convention: You need to think of a prefix or another naming convention for the
aggregated object’s attributes that appear in the aggregating object’s table. In the above example
we use a prefix that is a short form of the attribute name.

• Physical database page size: The positive effects of aggregating an object in the same table can
be partially compensated if the aggregated object’s attributes start a small fraction of a new
database page. In such a situation two database pages need to be read instead of one.

Variants

We have discussed the simple case of a 1:1 relation between aggregating object type and aggregated
object type. See Foreign Key Association for how to map a 1:n relation between aggregating object
and aggregated object. See also Overflow Table [Kel+97] for a trick to avoid using foreign key
associations in case of 1:n relations.

Related Patterns

Foreign Key Aggregation is an alternative solution to Single Table Aggregation. See also
Representing Collections in a Relational Database [Bro+96]. When applied to ordinary relational
database access layers, it can be compared to Denormalization [Kel+97].

Further Reading

“Mainstream Objects”, a book by Ed Yourdon et al. [You+95] dedicates its whole chapter 21 to the
question of when and how to use aggregation versus associations at the modeling level.

Pattern: Foreign Key Aggregation

Abstract

The pattern shows how to map aggregation to a relational data model using foreign keys.

Context

Reconsider the example for Single Table Aggregation (see Figure 1). Presume you want a solution
that treats the AddressType as a first class object and that allows better maintenance than Single Table
Aggregation.

Problem

How do you map aggregation to relational tables?

Forces

See the Single Table Aggregation pattern.

Solution

Use a separate table for the aggregated type. Insert an Synthetic Object Identity into the table and use
this object identity in the table of the aggregating object to make a foreign key link to the aggregated
object.

Structure

Aggregating Object's Table

.....
AggregatedObjectsOID char(64)

is mapped to

Aggregated Object's Table

........
SyntheticOID char(64),
......

is mapped to

Foreign Key

AggregatingObject

AggregatedObject

The AggregatingObject is mapped to a table. The AggregatedObject is mapped to another table. The
Aggregated Object’s Table contains a Synthetic Object Identity. This SyntheticOID is referenced by
the AggregatedObjectsOID foreign key field in the Aggregating Object’s Table.

Example Resolved

If we apply the solution to the example on page 5, we get a Customer Table that contains two foreign
key references to the AddressType Table . The AddressType Table contains a Synthetic Object
Identity field that is used to link the two tables.

Customer

AddressType

String Street
String City
Char[20] ZipCode
String State
.....

String Name
.......
AddressType InvoiceAddress
AddressType DeliveryAddress

CustomerTable

Name char(50)
......
InvoiceAddressOID char(64)
DeliveryAddressOID char(64)

AddressType Table

SyntheticOID char(64)
Street char(50)
City char(50)
ZipCode char(20)
State char(50)

Retrieving a customer object from the database now costs three database access operations (one for
the Customer and one for each AddressType, Invoice Address and DeliveryAddress) instead of one in
the case of Single Table Aggregation.

This can be brought down to a single join database access, if the AddressType Table is equipped with
an additional back link field that points to a Synthetic Object Identity of the Customer Table. The cost
of this is getting a result set of two addresses, each with all the customer attributes.

Consequences

• Performance: Foreign Key Aggregation needs a join operation or at least two database accesses
where Single Table Aggregation needs a single database operation. If accessing aggregated
objects is a statistical rare case this is acceptable. If the aggregated objects are always retrieved
together with the aggregating object, you have to have a second look at performance here.

• Maintenance: Factoring out objects like the AddressTypes into tables of their own makes them
easier to maintain and hence makes the mapping more flexible.

• Consistency of the database: Aggregated objects are not automatically deleted on deletion of the
aggregating objects. To perform this task you have to provide and maintain application kernel
code or database triggers. This is also an implementation issue. You have to chose one of these
two options.

• Ad-hoc queries: Factoring out aggregated objects into separate tables allows easy querying these
tables with ad-hoc queries.

Implementation

• Consider using domain keys instead of Synthetic Object Identities. Domain keys have the
drawback that they cannot be used for arbitrary links pointing back to an owner object as the
owned object type cannot know all types of objects that will ever own it.

• Consider inserting a link back from the aggregated object to the aggregating object. In our
address example this is accomplished by inserting a field into the address table that stands for the
owner of the AddressType object. As the owner may be an Employee, a Customer or some other
type that aggregates the AddressType you have to use a Synthetic Object Identity as the link’s
type. Bi-directional links offer some advantages for queries, consistency checking and other
purposes. You don't have to search the aggregating object's table to find an owner of an
aggregated object. On the other hand, backlinks are more expensive in terms of database
operations needed to keep them up to date.

Related Patterns

For an alternative see Single Table Aggregation. Foreign Key Association works very similar. See
also Representing Collections in a Relational Database [Bro+96].

Patterns for Mapping Inheritance

There are various ways to map inheritance hierarchies to relational database tables. The patterns
presented below are pure forms of exactly one mapping style. In practice you may mix mapping
styles to arbitrary table mappings.

The following discussion does not cover multiple inheritance. There are few meaningful examples of
domain level multiple inheritance anyway. Most uses for multiple inheritance are motivated by
protocol inheritance. A class inherits several protocols from abstract base classes. Protocol classes
that have a persistent state are rare. So simple inheritance covers most practical cases.

Running Example

As a running example we use a part of a so called partner system. A Party is any form of
person (natural person or institution) our company has to work with. Customers are Parties as
well as Employees. When it comes to Employees, we distinguish between SalariedEmployees
and FreelanceEmployees. This results in the following object diagram.

SytheticOID OID
String Name

Party

CreditState aState

Customer

SalariedEmployee

Employee

FreelanceEmployee

Money MonthlySalary

String SocSecurityNo

Money HourlySalary

We did not add all attributes needed for a real life application but insert only as many
attributes as are needed to demonstrate the different mapping patterns that we discuss.
Therefore we do not use any complex attributes or relationships. For our example we assume
that none of the classes is an abstract base class. All five classes may have instances.

Pattern: One Inheritance Tree One Table

Abstract

The pattern demonstrates a way to map a complete inheritance hierarchy to a single database table.

Problem

How do you map an inheritance hierarchy of classes to database tables?

Forces

The forces relevant here, besides the General Forces on page 1, are:

• Polymorphic read and space consumption versus write/update performance: In an inheritance
hierarchy you need to support queries for all Party objects matching some given criteria. The
result set is polymorphic, In our example it might contain Employees, FreelanceEmployees or

SalariedEmployees. Solutions that best support polymorphic queries are those who either waste
disk space or are expensive in terms of write performance.

• Locking schemes of your database: Some databases implement page level locking only or might
be programmed to escalate locks very early. In this case you have to take care that database traffic
on a single table does not exceed a limit that results in excess locks and poor performance. If you
map to many classes to a single table, it is likely that you attract much traffic.

• Depth of the inheritance hierarchy: Some solutions that work acceptable with flat inheritance
hierarchies become ugly with very deep inheritance hierarchies.

• Maintenance effort: Mapping solutions that clutter a single object’s data across several tables
might be fast for polymorphic reading. The drawback is, they are very hard to maintain in case
new object attributes are added or existing object attributes are deleted. Schema evolution needs
to take into account that data are replicated across the physical data model. This may easily turn
into a maintenance nightmare. Other maintenance cases are insertion or deletion of a class in an
inheritance hierarchy.

• User-defined queries: If you want to give your user the opportunity to form her own queries you
need to assure that table mappings are still understandable from a user’s perspective.

Solution

Use the union of all attributes of all objects in the inheritance hierarchy as the columns of a single
database table. Use Null values to fill the unused fields in each record.

Structure

SytheticOID OID
BaseClassAttributes

BaseClass

DescandantAAttributes

DescendantA DescendantB

DescandantAAttributes DescandantBAttributes

Table for BaseClass, DescandantA, DescandantB

DescandantAAttributes DescandantBAttributesSytheticOID, BaseClassAttributes

BaseClassInstance

DescendantA Instance

DescendantB Instance

Null Values Null Values

Null Values

Null Values

Attribute Values

Attribute Values Attribute Values

Attribute ValuesAttribute Values

is mapped to

Example Resolved

The table design for our running example looks as follows.

Table PartyHierarchy

// Party attributes
SyntheticOID char(64)
Name char(50)
....

// Customer attributes
aState char(5)
....
// Employee attributes
SocSecurityNo char(15)
....

// FreelanceEmployee attributes
HourlySalary numeric(5,2)
....

// SalariedEmployee attributes
MonthlySalary numeric(7,2)
....

Consequences

• Write and update performance: Using One Inheritance Tree One Table allows reading and writing
of any BaseClass descendant with a single database operation.

• Polymorphic read performance: As all BaseClass descendants can be found in a single table,
polymorphic reading is straightforward. The only challenge is to construct the correct object type
for a selected database record. There are plenty of patterns for this task like Abstract Interface
[Col96].

• Space consumption: As you see from in the mapping depicted above, storing the objects’
attributes requires more space than absolutely necessary. The waste of space depends on the depth
of the inheritance hierarchy. The deeper the hierarchy and the bigger the difference between the
union of all attributes and the attributes of an average object, the bigger the waste of space.

• Balancing database load across tables: Mapping too many classes to a single table may cause
poor performance. The sources of such problems can be found in database behavior:

• If your database uses page level locking, too much traffic on a single table may severely slow
down the access. Parts of the effect may be compensated by clever clustering. If traffic on a
single table gets too heavy, expect performance degradation and also deadlocks.

• Too many locks on a single table may result in lock escalation1. The number of locks that
cause lock escalation is typically a parameter of relational database systems.

• Some classes need secondary database indexes to speed up search. If you implement many
classes in a single database table, you add up indexes on that table. Too many indexes on a
single table cause updates to become very slow as all the indexes have to be updated.

1 For a brief discussion of lock escalation see [Dat95, page 406].

• Maintenance cost: As the mapping is straightforward and easy, schema evolution is also
comparably straightforward and easy as long as the inheritance hierarchy does not become too
deep.

• Ad-hoc queries: As the mapping is intuitively clear, formulating ad-hoc queries is fairly easy.

Implementation

• Consider mapping all objects to a single table: You may also use the mapping to store all object
types in a single table - resulting in heavy traffic on the table. For small applications this is a
feasible and very flexible approach.

• Waste of space: You might check, whether your relational database allows packing of NULL
values. In this case the above mapping becomes more attractive as you avoid waste of space for
NULL values.

• Type identification: You need to insert type information into your table. You could compute the
type information from the NULL values. This is not too convenient as Synthetic Object Identities
should contain type information anyway. Hence it is better to use a straight Synthetic Object
Identity that contains type information.

Related Patterns

See also Representing Inheritance in a Relational Database [Bro+96]

Pattern: One Class One Table

Abstract

The pattern discusses how to map each classes in an inheritance hierarchy to a separate database
table.

Problem

How do you map an inheritance hierarchy of classes to database tables?

Forces

The forces are identical to those discussed with the One Inheritance Tree One Table pattern.

Solution

Map the attributes of each class to a separate table. Insert a Synthetic OID into each table to link
derived classes rows with their parent table's corresponding rows.

Structure

SytheticOID OID
BaseClassAttributes

BaseClass

DescandantAAttributes

DescendantA DescendantB

DescandantAAttributes DescandantBAttributes

is mapped to

SytheticOID OID
BaseClassAttributes
......

BaseClassTable

SytheticOID OID
DescandantAAttributes
......

DescandantATable

SytheticOID OID
DescandantBAttributes
......

DescandantBTable

Example Resolved

Mapping our running example to tables results in five tables - one for each class. A single instance of
a SalariedEmployee is represented in three of these five tables.

SytheticOID OID

String Name

Party Table

SytheticOID OID

SocSecurityNo char(15)

Employee Table

SalariedEmployee Table

MonthlySalary numeric(7,2)

SytheticOID OID

is linked via OID to

is linked via OID to

SytheticOID OID
String Name

Party

CreditState aState

Customer

SalariedEmployee

Employee

FreelanceEmployee

Money MonthlySalary

String SocSecurityNo

Money HourlySalary

Consequences

• Write and update performance: The pattern provides a very flexible mapping but is not the best
performer. Consider reading a FreelanceEmployee instance in our running example. This
operation costs 3 database read operations: One on the FreelanceEmployee table, one on the
Employee table and also one on the Party table. Writing costs 3 database write operations, each
updating one or more indexes. The mapping is expensive in terms of database operations for
write- and update intensive tasks. The costs rise with the depth of the inheritance hierarchy.

• Polymorphic read performance: In our running example a FreelanceEmployee’s instance has a
corresponding Employee instance and also a Party instance in the respective tables. Therefore,
polymorphic reading only require reading one table. This is one of the attractive sides of the
pattern besides space consumption and

• Space consumption: The mapping has near optimal space consumption. The only redundant
attributes are the additional synthetic OIDs needed to link the levels of hierarchy.

• Maintenance cost: As the mapping is straightforward and easy to understand, schema evolution is
straightforward and easy.

• Ad-hoc queries: As the mapping generally requires accessing more than one table to retrieve an
object instance’s data, ad-hoc queries are far from straight forward but hard to formulate for
inexperienced users.

• Heavy database load on root tables: The pattern causes heavy load on the root object type’s table.
In our running example, each transaction holding a write lock on the FreelanceEmployee table
needs to be accompanied by a write lock on the Party and also on the Employee table. See the
Consequences Section of One Inheritance Tree One Table for a discussion of the negative effects
of tables that form a bottleneck.

Implementation

• Abstract classes: Note that abstract classes are also mapped to a separate table.

• Type identification: For the above example we presume, that a Synthetic Object Identity contains
type information. Some type information is needed to construct the accurate class from the result
of a polymorphic read query.

Related Patterns

See also Representing Inheritance in a Relational Database [Bro+96].

Pattern: One Inheritance Path One Table

Abstract

The pattern demonstrates a way to map all attributes occurring in an inheritance path to a single
database table.

Problem

How do you map an inheritance hierarchy of classes to database tables?

Forces

The forces are identical to those discussed with the One Inheritance Tree One Table pattern.

Solution

Map the attributes of each class to a separate table. To a classes’ table add the attributes of all classes
the class inherits from.

Structure

SytheticOID OID
BaseClassAttributes

BaseClass

DescandantAAttributes

DescendantA DescendantB

DescandantAAttributes DescandantBAttributes

is mapped to

SytheticOID OID
BaseClassAttributes
......

BaseClassTable

SytheticOID OID
BaseClassAttributes
DescandantAAttributes
......

DescandantATable

SytheticOID OID
BaseClassAttributes
DescandantBAttributes
......

DescandantBTable

Example Resolved

Mapping our running example to tables results in five tables - one for each class. An instance of a
SalariedEmployee is represented in one of these five tables. The SalariedEmployee is mapped as
follows:

Table SalariedEmployee

// Party attributes
SyntheticOID char(64)
Name char(50)
....

// Employee attributes
SocSecurityNo char(15)
....

// SalariedEmployee attributes
MonthlySalary numeric(7,2)
....

Consequences

• Write and update performance: The mapping needs one database operation to read or write an
object.

• Polymorphic read performance: A polymorphic scan of all Party objects in our running example
would mean visiting 5 tables. This is expensive compared to One Class One Table or One
Inheritance Tree One Table.

• Space consumption: The mapping offers optimal space consumption. There are no redundant
attributes, not even additional synthetic OIDs in some ancestor's tables.

• Maintenance cost: Inserting a new subclass means updating all polymorphic search queries. The
structure of the tables remains untouched. Adding or deleting attributes of a superclass results in
changes to the tables of all derived classes. This may also touch polymorhic search queries if they
are static rather than dynamically generated from a dictionary. Hence the pattern needs support by
generators and dynamic queries to be maintainable.

• Ad-hoc queries: As the mapping generally requires accessing more than one table to perform
polymorphic searches, ad-hoc queries for polymorphic search are hard to write for inexperienced
users. Queries on leaf classes are trivial.

• Database load on root tables: There are no bottlenecks in tables near to the root of the inheritance
hierarchy. Accessing an object exactly locks one table.

Implementation

• Abstract classes: Note that abstract classes are not mapped to tables.

• Type identification: You need not insert any type information into the tables as the type of an
object cam be derived from the table name. Since Synthetic Object Identities should contain type
information anyway, it would be a waste of effort to strip the type information to gain a few bytes
of table space.

Related Patterns

See also Representing Inheritance in a Relational Database [Bro+96].

Pattern: Objects in BLOBs

Abstract

The pattern demonstrates a way to map objects to a single database table using BLOBs. The pattern
covers inheritance, aggregation, and associations. It is interesting from an academic point of view and
as a source of ideas to solve unusual problems in mapping objects to relational databases.

Problem

How do you map objects to a relational database?

Forces

The forces are identical to those discussed with the One Inheritance Tree One Table pattern.

Solution

Use a table containing two fields: One for the synthetic OID and a second one for a variable length
BLOB that contains all the data an object holds. Use streaming to unload the object’s data to the
BLOB.

Structure

SytheticOID OID
BaseClassAttributes

BaseClass

DescandantAAttributes

DescendantA DescendantB

DescandantAAttributes DescandantBAttributes

Table for BaseClass, DescandantA, DescandantB

BLOB for any type of objectSytheticOID

is mapped to

Example Resolved

The table design for our running example or any other example looks exactly like the above
table design.

Consequences

• Write and update performance: Objects in BLOBs allows reading and writing of any BaseClass
descendant with a single database operation. Note that BLOBs are not the fastest way to access
data types in many RDBMS.

• Polymorphic reads: Scanning classes for properties is difficult. As you do not have access to the
internal structure of the BLOB you need to register functions with the database that give you
access to the attributes. See [Loh+91] on how to implement such functions. Defining and
maintaining these functions costs as much or even more effort as using database fields from the
beginning.

• Ad-hoc queries: As scanning classes for properties is difficult, ad-hoc queries are also difficult to
express. Again additional functions need to be defined.

• Space consumption: If your database allows variable length BLOBs, space consumption is
optimal.

• Maintenance cost: Schema evolution is comparable to schema evolution in an object oriented
database.

Implementation

• Sources of similar implementations: Objects in BLOBs has been used in research prototypes.
These tried to come as close as possible to a OODBMS using a relational database as storage
manager. Hence implementing the pattern is very similar to implementing an OODBMS on top of
a existing storage manager.

• Balancing of database load across tables: Mapping too many classes to a single table results in
poor performance. For a discussion see the Consequences Section of the One Inheritance Tree
One Table pattern.

• Combining OODB properties with relational databases: It is feasible to combine this pattern with
other types of object/relational mappings. In this case the BLOB would hold complex object
structures, like a project planning chart. Additional fields would hold the information needed to
access the organizational data via normal ad-hoc queries (see Figure 3). Objects in BLOBs has
been used in the SMRC research prototype [Rei+94, Rei+96]. The BLOBs in SMRC do not only
hold a single classes’ attributes but may contain a whole net of objects streamed to a BLOB (as
depicted in Figure 3). The approach is used to allow coexistence of relational and OODBMS data
in a single database. The approach is not exactly used in the pure form we describe in the above
pattern.

...

Table Projects

Name Budget Schedule

Easy

Hard

100.000

1.500.000

BLOB type

Figure 3: Coexistence of Object Data and Relational Data (picture adapted from [Rei+94])

Related Patterns

Used in a pure form, the pattern is similar to the One Inheritance Tree One Table mapping. See also
Representing Inheritance in a Relational Database [Bro+96].

Patterns for Mapping Object Associations to Tables

This section presents two patterns used to map associations between objects: Foreign Key
Association and Association Table. Note that the problem behind mapping 1:n associations is
identical to Representing Collections in a Relational Database [Bro+96].

Pattern: Foreign Key Association

Abstract

The pattern shows how to map 1:n associations between objects to relational tables

Example

Consider the classic Order / OrderItem example. A valid Order may have from zero to many
OrderItems.

Order OrderItem

SyntheticOID OrderNo

Set<Ref<OrderItem>> Items

Problem

How do you map an 1:n association to relational tables?

Forces

See the General Forces on page 1.

Solution

Insert the owner object’s OID into the dependent objects table. The OID may be represented by a
database key or a Synthetic Object Identity.

Structure

OwnerObject

DependentObject

SyntheticOID OID

Set<Ref<DependentObject>
 DependentObjectSet

DependentObjectTable

SyntheticOID char(64)
OwnerObjectOID char(64)

......

OwnerObjectTable

SyntheticOID char(64)

......

links to

is mapped to

Foreign Key

Consequences

• Read performance: Reading an Order object costs a join operation or two read operations - one of
them multiple. You then have the Order object plus a set of references to all OrderItems.

• Write Performance: Writing all owned objects in an 1:n association using the pattern costs the
number of changed owned objects as you would not write unchanged objects.

• Performance and redundancy versus maintenance cost and normal forms: The mapping scheme
is the usual mapping scheme in relational database applications. It does not collide with normal
forms. Hence it allows reasonable maintenance cost.

• Space consumption is near optimal - except the space required for the foreign key column in the
DependentObject’s table.

• Ad-hoc queries: As the mapping is common in relational database applications, ad-hoc queries are
not harder or easier to write than in any relational database application.

• Application style: The mapping best suits relational style applications. You should not try to use a
relational database for CAD or CASE applications. The reason for this lies exactly in mapping of
associations to relational tables via foreign keys. Resolving an association costs a join operation
or a second database access. Page based storage systems, such as OODBMS can handle similar
use cases much faster but are worse at tuple processing - a stronghold of the relational model.

• Integration of legacy systems: As most relational legacy systems use exactly the mapping
described, converting 1:n associations to objects is no source of new problems.

Implementation

• General Performance: If performance turns out insufficient you might use a Relational Database
Access Layer below the object/relational mapping and apply performance improvement patterns
such as Controlled Redundancy, Denormalization, or Overflow Tables [Kel+97]. This allows you
to later optimize physical table schemes without affecting the logical mapping scheme proposed
by this pattern.

• Update performance: When updating OrderItems (dependent objects) you should update only
those that really have been changed and not each and every OrderItem that you did load into your
working storage. Update and insert operations are expensive.

• Prefetching dependent objects: In case you know in advance, that you need access to all
dependent objects (like OrderItems) for most use cases, you can get all data using a join operation
and construct the owner object and the dependent objects from the result of a single database
operation like:

 select * from Order O, OrderItem I

where O.key = ‘YourOrderKey’ and

O.key = I.OrderKey

 This is faster than filling a container of Smart Pointers (Set<Ref<OrderItem>>) with object
identities that have to be dereferenced one by one. For an Order with 20 OrderItems this costs 1
database access for the Order object, 1 multiple read access to get 20 object identities of the
dependent objects plus 20 single record read accesses to get the OrderItem one by one.

Related Patterns

In practice an 1:n association is often hard to distinguish from an aggregation. Therefore also consider
the aggregation patterns Single Table Aggregation and Foreign Key Aggregation. The later is the
same solution for a slightly different problem.

As an alternative to using foreign keys, consider Controlled Redundancy, Denormalization, and
Overflow Tables [Kel+97].

The pattern is a close relative of Mapping n:m Associations using Association Tables. See also
Representing Object Relationships as Tables [Bro+96].

Pattern: Association Table

Abstract

The pattern shows how to map n:m associations between objects to relational tables

Example

As an example we use the n:m association between an Employee object type and a Department object
type. An Employee can work for more than one department. A department usually comprises more
than one Employee.

Employee Department

SyntheticOID OID

Set<Ref<Department> >
 employedIn

SyntheticOID OID

Set<Ref<Employee>>
 employedPeople

Problem

How do you map n:m associations to relational tables?

Forces

See the General Forces on page 1.

Solution

Create a separate table containing the Object Identifiers (or Foreign Keys) of the two object types
participating in the association. Map the rest of the two object types to tables using any other suitable
mapping patterns presented in this paper.

Structure

ObjectA

SyntheticOID OID

Set<Ref<ObjectB> >
 relatedObjectsB

is mapped to

Foreign Keys

ObjectATable

SyntheticOID char(64)
.......

ObjectAObjectBTable

refObjectA char(64)
refObjectB char(64)
.......

ObjectBTable

SyntheticOID char(64)
.......

ObjectB

SyntheticOID OID

Set<Ref<ObjectA> >
 relatedObjectsA

Consequences

The consequences are analogous to Foreign Key Association only adapted to the slightly
different context. Hence we do not repeat them here.

Implementation

• General Performance: If performance turns out insufficient you might use database optimization
patterns like Controlled Redundancy, Denormalization, or Overflow Tables [Kel+97]. In our case
of a symmetric n:m association things get slightly more complicated as you have to break
symmetry in order to apply performance optimizations.

• Prefetching objects: In case you know in advance, that you need access to all dependent objects
(like Employees of a Department) for most use cases, get all data using a join operation and
construct the Department object and the Employee objects from the result of a single database
operation like:

 select * from DepartmentTable D, EmployeeDepartmentTable ED,

 EmployeeTable E

where D.SyntheticOID = ‘YourDepartment’

D.SyntheticOID = ED.DepartmentKey and

ED.EmployeeKey = E.SyntheticOID

 This is faster than filling a container of Smart Pointers (Set<Ref<Employee>>) with object
identities that have to be dereferenced one by one. The same discussion with slightly different
arguments could be found in Foreign Key Association.

Related Patterns

The pattern is closely related to Foreign Key Association. See also Representing Object Relationships
as Tables [Bro+96].

Known Uses

Single Table Aggregation, Foreign Key Aggregation, Foreign Key Association, and Association
Table are used as an option in Persistence [www.persistence.com] or in the TopLink Smalltalk
Framework [www.objectpeople.com/toplink/] and in most other persistence frameworks. The patterns
are also used in an object/relational access layer by HYPO-Bank [Col+96,Kel+96] and in an
object/relational gateway by POET [POE96].

One Inheritance Tree One Table and One Class One Table are discussed as a design option in a
concept for an object/relational gateway by POET [POE96] together with One Inheritance Path One
Table. The later pattern has been used by the Champs and HYPO projects [Col+96, Hah+95, Kel+96].

Objects in BLOBs has been used in the SMRC research prototype [Rei+94, Rei+96].

Credits and Acknowledgments

Kyle Brown and Bruce Whitenack discuss Representing Objects As Tables and many other patterns
we cited above in their “Crossing Chasms” pattern language [Bro+96]. Stanislav Kumsta and Uwe
Steinmüller have written a series of short patterns on mapping objects to tables [Ste97]. Wolfgang
Hahn, Fridtjof Toenniessen, and Andreas Wittkowski describe some similar experiences in their
report on the Champs project [Hah+95]. And here the circle closes as Uwe Steinmüller has also been a
member of the Champs team. The same problems have again been discussed by a team working on
the POETGate object/relational gateway for the POET object database [POE96] and finally we have
made own experience with the HYPO project [Bar+95]. The list could be continued. I'd like to
express my thanks to the two reviewers so far: Kyle Brown and Jens Coldewey.

References
[Bar+95] Christian Barschow, Petra Hieber, Wolfgang Keller, Christian Mitterbauer:

Persistente Objekt unter Berücksichtigung bestehender relationaler Datenbanken,
Internal Technical Report, HYPO Bank, München 1995.

[Bro+96] Kyle Brown, Bruce G. Whitenack: Crossing Chasms, A Pattern Language for Object-
RDBMS Integration, White Paper, Knowledge Systems Corp. 1995. A shortened version is
contained in: John M. Vlissides, James O. Coplien, and Norman L. Kerth (Eds.): Pattern
Languages of Program Design 2, Addison-Wesley 1996.

[Col+96] Jens Coldewey, Wolfgang Keller: Objektorientierte Datenintegration - ein Migrationsweg
zur Objekttechnologie, Objektspektrum Juli/August 1996, pp. 20-28.

[Col96] Jens Coldewey: Decoupling of Object-Oriented Systems - A Collection of Patterns; sd&m
GmbH & Co.KG, Munich, 1996; available via http://www.sdm.de/g/arcus/

[Dat95] C. J. Date: An Introduction to Database Systems, Sixth Edition; Addison-Wesley 1995.

[Hah+95] Wolfgang Hahn, Fridtjof Toennissen, Andreas Wittkowski: Eine objektorientierte
Zugriffsschicht zu relationalen Datenbanken, Informatik Spektrum 18(Heft 3/1995); pp. 143-
151, Springer Verlag 1995

[Kär95] Winfried Kärtner : Konzept: Datentypen in der Hypo-Bank, Internal Technical Paper, HYPO
Bank and sd&m, 1995.

[Kel+96] Wolfgang Keller, Christian Mitterbauer, Klaus Wagner: Objektorientierte
Datenintegration über mehrere Technologiegenerationen, Proceedings ONLINE, Kongress
VI, Hamburg 1996.

[Kel+97] Wolfgang Keller, Jens Coldewey: Relational Database Access Layers: A Pattern Language,
in „Collected Papers from the PLoP’96 and EuroPLoP’96 Conferences„, Washington
University, Department of Computer Science, Technical Report WUCS 97-07, February 1997.

[Loh+91] Guy M. Lohman, Bruce G. Lindsay, Hamid Pirahesh, K. Bernhard Schiefer: Extensions to
Starburst: Objects, Types, Functions, and Rules. CACM 34(10) pages 94-109 (1991)

[POE96] POET GmbH; POETGate - ein Konzept zur Integration relationaler Daten in die POET-
Architektur; Poet GmbH; 1996.

[Rei+94] Berthold Reinwald, Stefan Deßloch, Michael J. Carey, Tobin J. Lehman, Hamid
Pirahesh, V. Srinivasan: Making Real Data Persistent: Initial Experiences with SMRC. POS
1994: 202-216

[Rei+96] B. Reinwald, T. J. Lehman, H. Pirahesh, V. Gottemukkala: Storing and using objects in a
relational database; IBM Systems Journal, Vol. 35, No. 2, 1996.

[Rum+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William
Lorensen: Object-Oriented Modelling and Design, Prentice Hall, 1991.

[Ste97] Uwe Steinmüller, personal communications, 1996, 1997.

[You+95] Ed Yourdon, Katharine Whitehead, Jim Thomann, Karin Oppel, Paul Nevermann:
Mainstream Objects, An Analysis and Design Approach for Business; Prentice Hall 1995.

