
Error Detection

Klaus Renzel

sd&m – software design & management GmbH & Co. KG
Project ARCUS1, Thomas-Dehler-Str. 27 – D 81737 München, Germany

Email: Klaus.Renzel@sdm.de, Phone: +49-89-63812-251

!BSTRACT

Before we can handle an error or failure we have to detect it. Error Detection shows how to install
error detectors within your software: it enriches the code with a number of run-time checks. Those
checks are a prerequisite for handling software faults successfully and to avoid system crashes.

!LSO�+NOWN�!S

Error Traps, Assertion Checking

#ONTEXT

Reliability is a major requirement for your software system. Unfortunately, no software system can be
assumed to behave totally correct. Even careful testing, debugging or the use of formal methods does
not guarantee fault-free software. Thus, your system must expect errors or failures at run-time and
handle them by appropriate mechanisms.

%XAMPLE

Imagine a simple library system. An abstract specification for this system may introduce datatypes
User, Book and Library. A function LendBook specifies the user transaction of borrowing a
book from the library. The number of books which can be borrowed by a single user is restricted to a
certain limit modeled by a constant BorrowingLimit. A predicate Authorized characterizes
whether a user is allowed to borrow a book or not (e.g. the system distinguish between different user
classes).

-%4(/$ LendBook (User u, Book b)

"%').

-- Possible error situations:

-- * The parameters are not well intialized

-- * The book is not part of the library

-- * The user is not known or authorized

-- * The user will exceed the limit

-- * The user already borrowed this book

-- * The book is currently lent to another user

...

%.$

1 This work is sponsored by the German Ministry of Research and Technology under project name ENTSTAND and is

part of a larger effort to collect patterns for business information systems, currently under development by the
ARCUS team (http://www.sdm.de/g/arcus).

For an implementation the error behaviour is important: How to implement the operations for the
library system to ensure that possible errors such as a violation of the borrowing constraint are de-
tected as early as possible? Think of an implementation of the method LendBook:

How and where to check for error conditions within this method?

0ROBLEM

How to detect errors or failures at run-time to enable the system to react to such situations pro perly?

&ORCES

• 3PECIFICATION: A failure can only be detected in relation to a specification of the correct be-
haviour. The specification itself is assumed to be correct. In this respect, error detection means
to verify the state and behaviour of a system against the specification at run-time.

• #OMPLETENESS�VERSUS�SIMPLICITY: Often it is not feasible and even sensible to check an imple-
mentation completely against its specification. Either the implementation of an operation is too
simple or checking code is at least as complex as the implementation itself.

• #OMPLEXITY�VERSUS�CRITICALITY: Balance necessary overhead (additional complexity, code size of
source and executable) with the severity and frequency of errors.

• 0ERFORMANCE�VERSUS�RELIABILITY: On the one hand, we want minimal performance penalties, and,
on the other hand, we want to be able to detect nearly all kinds of errors as soon as possible.

• 2OBUSTNESS�AND�CONSISTENCY: It is desirable to automate error checking as much as possible be-
cause automation supports a coherent design and correct implementation.

• -AINTAINABILITY: To preserve maintainability of the application code, you should avoid clut-
tering the code with a mass of error detectors.

• &LEXIBILITY: To allow more flexibility, you should provide a way to activate and deactivate the
error detectors.

• ,OGGING: You should provide a basic error log capability into which error detection events are
recorded.

3OLUTION

Specify the behavior of the classes and methods precisely using invariants, pre- and postconditions
[Mey88].2 Instrument methods (except inline methods and macros) to check for those conditions as
can be done with reasonable effort. The table shows the most common checks for a method m.

The pre- and postconditions are constraints about the class’s internal state and the environment’s state
as formulated in the specification. A developer may insert additional checks for special assertions,
such as loop invariants. Sometimes it is necessary to think about alternative conditions to be checked
because the specified ones are not practicable.

2 Every constraint must be made explicit (e.g. to avoid reuse errors [JM97]). To enforce a particular constraint (e.g. a
constraint on the relation between a group of objects) can be a difficult design task.

What? Where?

Invalid parameters. On entry of the method.

Violation of the pre-
condition.

On entry of the method.

Unexpected results or
failures of methods
called by m.

Immediately after return of the method. If the language supports exception
handling signaling of an exception automatically invokes an appropriate ex-
ception handler. Thus we do not need to instrument the code with an additional
check for the result and the exception handler code can be well separated from
the application code.

Violation of a
method’s invariant.

We have to distinguish between two kinds of invariants: some invariants are
related to the whole class and they are checked at the end of every method of
that particular class. This works well (the invariant holds on entry of every
method) as long as the data of the class is only accessed and manipulated by
these methods. Checking an invariant on entry as well as on termination of a
method is necessary if an invariant concerns properties of shared classes
(aliasing) or if an invariant is restricted to particular methods. In the latter case,
the invariant can also be expressed as part of the pre- and postcondition.

Violation of the post-
condition.

On termination of the method.

3TRUCTURE

The following pseudo-code illustrates the structure of a method instrumented for error detection. We
use the notation [assertion ? action if the assertion is violated] for a general
error detector.

-%4(/$ AnyMethod(aType1 aParam1, aType2 aParam2,) � aReturnType

"%').

------- error detection header ------------------------

; A0ARAM��VALID � RAISE EXCEPTION�FOR�INVALID�PARAMETER�=�

; A0ARAM��VALID � RAISE�EXCEPTION�FOR�INVALID�PARAMETER�=�

; INVARIANT HOLDS � RAISE�EXCEPTION�FOR�VIOLATED�INVARIANT�=�

;�PRECONDITION�HOLDS�� RAISE�EXCEPTION�FOR�VIOLATED�PRECONDITION�=�

�normal method body�

-- do something

; SPECIAL�TEST�� RAISE�EXCEPTION�=�

Result = aClass.OtherMethod(aValue);

;�EXPTECTED�2ESULT�� RAISE�EXCEPTION�=�

-------- error detection footer --------------------------

;�INVARIANT HOLDS � RAISE�EXCEPTION�FOR�VIOLATED�INVARIANT�=�

;�POSTCONDITION�HOLDS�� RAISE�EXCEPTION�FOR�VIOLATED�POSTONDITION�=�

; RETURN�VALUE�VALID � RAISE�EXCEPTION�FOR�INVALID�RESULT�VALUE=�

2%452.�aValue�

(!.$,%

HANDLE�EXCEPTIONS�RAISED�WITHIN�THE�BLOCK

%.$

%XAMPLE�2ESOLVED

The specification of the library system may be given by (using an adhoc notation)

30%#)&)#!4)/.�#,!33�LibrarySystem

"!3%$�/. Archive, User, Book, ...

).6!2)!.43

∀ u ∈ GetUsers() . NrOfElems(BorrowedBooks(u)) ≤ BorrowingLimit()
-%4(/$ LendBook (User u, Book b)

2%15)2%3

u.IsValid() ∧ b.IsValid() ∧ b ∈ GetArchive() ∧ u ∈ GetUsers() ∧
Authorized(u,b) ∧ ¬(∃ u’: User. u’ ∈ GetUsers() ∧ b ∈ BorrowedBooks(u’))

%.352%3

b ∈ BorrowedBooks(u) ∧
NrOfElems(BorrowedBooks(u)) = NrOfElems(OLD�BorrowedBooks(u)) + 1

-%4(/$�BorrowingLimit : Nat ...

-%4(/$ GetUsers : Set(User) ...

-%4(/$ GetArchive : Archive ...

-%4(/$ BorrowedBooks(User u) : Set(Book) ...

-%4(/$ Authorized(User u, Book b) : Bool ...

���

The implementation makes use of a class BookAccount. For every library user exists an account to
administer the books lent to him.

-%4(/$ LendBook(User u, Book b)

"%').

------- error detection header ------------------------

; u.IsValid() � RAISE InvalidParameter =�

;�b.IsValid() � � RAISE InvalidParameter �=�

;�b ∈ GetArchive() � RAISE UnknownBook =;

; u ∈ GetUsers() � RAISE UnknownUser =�

;�Authorized(u,b) ��RAISE NoAccess =;

;¬b.IsBorrowed() � RAISE BookInUse =;

; CheckLimit(u) � RAISE�UserExceedsLimit =�

�normal method body �

���

b.MarkAsBorrowed();

GetBookAccount(u).EnterBook(b);

���

-------- error detection footer --------------------------

; CheckLimit(u) � RAISE�UserExceedsLimit =�

;�b ∈ BorrowedBooks(u) � RAISE IncorrectLending =�

(!.$,%

HANDLE�EXCEPTIONS�RAISED�WITHIN�THE�BLOCK

%.$

The implementation shows that we use an extra method CheckLimit to implement the class invari-
ant. IsValid is also a special check method provided by the datatypes to examine the definedness
of values. The implementation leaves out the last assertion in the specification. Because of the special

keyword old which yields the value of a variable before method execution, a possible implementa-
tion has to store this value in some temporal variable, for example:

Int tmp_nrbooks =�NrOfElems(BorrowedBooks(u))�

�normal method body�

���

-------- error detection footer --------------------------

;�NrOfElems(BorrowedBooks(u)) = tmp_nrbooks���1 � RAISE InvalidNrOfBooks =�

#ONSEQUENCES

• 3PECIFICATION: The implementation of the detectors is guided by the specification. As already
mentioned we must assume that the specification is correct, so this solution is not helpful to
detect errors in the design specification. Whether this solution is really effective and can detect
a huge number of errors also depends on the quality (completeness) of the specification. If the
specification carefully exposes the pre- and postconditions and invariants, a correct imple-
mentation according to this pattern will detect most implementation errors. The solution is not
suited to detect non-termination (e.g. endless loops).

• #OMPLEXITY�VERSUS�CRITICALITY: Whether this solution detects errors as early as possible depends
on the method’s size. The smaller the methods the higher the frequency of checking and thus
detection is closer to the original cause of an error. The size of a method varies depending on
the programming style and language. Roughly speaking methods in object oriented languages
tend to be smaller than procedures in imperative languages.

• 0ERFORMANCE�VS��RELIABILITY: The solution enriches the code of nearly every method. On the one
hand this enables early detection of errors and possibly prevents small errors to become larger
problems. On the other hand it strongly effects the performance of an application. Of course
the kind of implementation influences the performance, but to really speed up the only choice
is to switch off error detection. A compromise would be to restrict error detection to the criti-
cal parts of an application. Whether you restrict assertion checking in a release version due to
performance depends on the application type. For example, in the control software of Ariane 5
[JM97] developers remove some checks to gain performance, whereas in our practice at sd&m
performance of business information systems seldom essentially suffers from checking code
but mostly from database related issues.

• 2OBUSTNESS� AND� CONSISTENCY: A critical situation is the incorrect implementation of an error
detector itself. This danger is increased by the fact that pre- and postconditions as well as in-
variants are mostly hand-coded. For example, the implementation of assertions may introduce
loops.

• -AINTAINABILITY: As most of the checks are done when entering or leaving a method they can
be well separated from the functionality within a method’s body. Other aspects relevant to
maintenance depend on the implementation (e.g. use of special check methods, collecting and
logging information describing the error context).

• &LEXIBILITY: The checking of preconditions aims at detecting errors within the clients of a
method, but the actual checking is done by the callee. Therefore, separate compilation of the
caller and callee’s code reveals some inflexibility. When compiling callee’s code we already
have to decide whether we want to switch off or on assertion checking (by use of a single
flag). Instead, we want to decide about checking preconditions when compiling the clients
code. Checking on the client side also provides more optimization possibilities for compiling
assertions [GK97].

• ,OGGING: An error detector can write valuable information to a log file. As detection is close to
the originating event the information about the system’s state at this point is very important for
later analysis of the error situation. Thus, the solution supports debugging of programs, espe-
cially when interactive debugging is not possible. The disadvantages are: the need of every
detector to access a module offering logging services and the negative effect of logging opera-
tions on system performance.

)MPLEMENTATION

• Check methods: By introducing additional methods to a class for checking particular properties
(e.g. an invariant, the consistency of a class) we can avoid redundant code in a number of de-
tectors which have to verify these properties. In the library example we use methods IsValid
and CheckLimit.

• Optimizations: It is not necessary to check assertions and invariants within every method and
even for a method it may depend on the caller of the method. For example, it is not practicable
to instrument simple get-methods to verify that they do not modify the object’s current state. In
the library example the checking code calls other methods. It is desirable that assertion check-
ing within those methods is only triggered when they are called from other objects. The same
applies to internal (private) method calls.

• Detector actions: Once an error is detected a number of actions should be triggered: collection
of context information, creation of an exception object, reporting the exception to the error log,
cleaning up resources, trying to reach a consistent state and finally signaling the exception to
the caller. Again, to avoid redundant code it is necessary to implement macros or methods for
these actions.

• Activation, Deactivation: Introducing different checking levels and switches offers more flexi-
bility concerning the intensity of checking. C and C++ programmers often use preprocessor di-
rectives (like #define, #ifdef) to implement compile-time switches (either a global switch
via makefile or locally within the source files), which allows the complete removal of error
detectors from the code. For a more fine-grained control, it is necessary to distinguish between
different kinds of checks or to provide switches on a per class level. Consider who should be
able to activate and deactivate detectors: is it sufficient to fix the error detection mode at com-
pile-time by the software developers or do system administrators need run-time configuration
capabilities?

• Macros: To implement error detectors with macros helps to keep the code attachments small
and readable, they prevent redundant code, are very flexible, easy to change or remove, com-
pile time overhead is acceptable and run-time performance is very good. Note that it is also
possible to use a preprocessor like that for C and C++ for other languages (e.g. Java, Cobol).
Macros, however, have drawbacks for debugging as you cannot step into a macro with a de-
bugger and macro expansion increases the code size.

• Generation: Generally, it is helpful to generate as much code from the specification as possi-
ble. How much code for error detection might be automatically derived from the specification
depends on the specification language, on the one hand, and the programming language, on the
other hand. But it is always possible to generate code templates, which must be completed by
hand-coding. Especially, the precondition and invariants are often specified by natural lan-
guage, which makes it impossible to generate code for them. Otherwise, specification lan-
guages which support precise specification of preconditions and invariants by logic formulas
(predicate calculus) also require to refine these constraints as long as they are executable. Eiffel
is a programming language which includes directives for executable specifications.

• Multiple Return Statements: The verification of assertions becomes more difficult in the case of
multiple return statements, because assertion checking must be done on different places within
a method. Different solutions are possible: We can forbid multiple return statements, we can
use some compile environment which automates multiple code instrumentation or we can cre-
ate a special check object triggering the assertion checking via the automatic destruction of the
object.

• Inheritance of assertions: Use of inheritance as behavioural subtyping requires to keep or
weaken a precondition and to keep or strengthen a postcondition. Advanced implementation of
assertions consider inheritance and support the checking of derived classes by some automa-
tism.

• Old Values: Often postconditions express state changes of a method by use of variable’s values
before method execution („old values“). In the implementation we have to save the old values
temporarily to make them accessible while checking postconditions. For example, the Eiffel
language supports access to old values by an extra operator old, which can be used in the
specification of postconditions.

3AMPLE�#ODE��#��	

As the exception log should contain some useful maintenance information, you need to include lots of
parameters into an exception’s constructor. Most of these parameters such as __LINE__ numbers or
__FILE__ names may be obtained automatically or may be generated using function calls like
_actualTime(). Writing all these parameters by hand is far too expensive.

In C++ we can use parameterized macros that contain the minimum possible number of actual pa-
rameters. We can obtain all other information using macros like __LINE__, __FILE__,
__FUNCTION__ or whatever your development environment supports.

The actual macros you use depend on your project’s requirements and programming environment.
The following macros give an impression of what has been used successfully in various sd&m proj-
ects:

// define detectors

�DEFINE AssertTemplate(CONDITION,EXID,TEXT) \

 IF (�(CONDITION)) \

 THROW ExAssertionFailure(#EXID,#CONDITION,TEXT,__FUNCTION__, \

_LINE__,__FILE__,__DLL_NAME__,__EXE_NAME__,__EXTIME__, \

__USER_NAME__)

�DEFINE AssertParam(CONDITION, TEXT) \

 AssertTemplate(CONDITION, EX_ILLEGAL_PARAM, TEXT)

�DEFINE AssertPrecond(CONDITION, TEXT) \

 AssertTemplate(CONDITION, EX_VIOLATED_PRECONDITION, TEXT)

�DEFINE AssertInvariant(CONDITION, TEXT) \

 AssertTemplate(CONDITION, EX_VIOLATED_INVARIANT, TEXT)

�DEFINE AssertPostCond(CONDITION, TEXT) \

 AssertTemplate(CONDITION, EX_VIOLATED_POSTCONDITION, TEXT)

Other approaches in C++ use include files to insert the necessary code for error detection, implement
check methods by templates, or use inline methods. The listed approaches can also be combined. Be

careful using __LINE__ and __FILE__ macros within check methods. If they are expanded, the
preprocessor will show you the source line of the check method and not the line in which the template
was used. It is an advantage of the macro approach that we can hide __LINE__ and __FILE__
within the assert macros. Otherwise, every call of a check method within the application code must
explicitly pass __LINE__ and __FILE__ as parameters.

3AMPLE�#ODE��#OBOL	

We took the following examples from the error handling of sd&m’s TLR project [TLR95], which
uses a standardized mechanism to perform result checks and type checking of variables. The follow-
ing code excerpt (in an extended Cobol language) for a module operation illustrates the mechanism:

**

/0%2!4)/. DoSomething

**

0!2!-%4%2

IN aParamID � aType

...

"%').

�#(%#+ SF (aParamID OF�$PARAMETER, aType) // checking the type of the parameter

...

�#!,, ModuleName OtherOperation

 (// parameter values...

 aKey)

�#(%#+2#�(RC-OK, RC-NOK)

IF $GRC = RC-NOK�THEN

�3%4$&�(anErrorNumber, aKey)

ENDIF

...

�2%452.(RC-OK)

%.$/0%2!4)/.

%CHECK is the type-checking command and %CHECK-RC compares a list of expected return-codes
with the actual return-code. Deviation of the latter from the expected return-codes results in a system
error.

From this high-level Cobol code, pure Cobol is generated. Every module needs some types and vari-
ables for exception handling which are implemented by the following data structures:

 ------------------------------- types ----------------------------------

01 type-constants

...

05 rc-global .

 10 RC-OK pic x(25) value ’RC-OK’.

 10 RC-NOK pic x(25) value ’RC-NOK’.

 ...

05 module-state .

 10 NORMAL-STATE pic x(2) value ’OK’.

 10 SE-STATE pic x(2) value ’SE’.

 ...

05 exception-id .

 10 SE-PARAMETER pic x(25) value ’SE-PARAMETER’.

 10 SE-UNEXPECTED-RC pic x(2) value ’SE-UNEXPECTED-RC’.

 10 SE-PRECONDITION pic x(2) value ’SE-PRECONDITION’.

 ...

 ----------------------- internal module variables ----------------------

 01 internal-variables

...

05 trace-buffer .

 ...

05 format-string pic x(80).

 ...

 -------------------------- global variables ----------------------------

 01 global-variables

...

05 rc-global pic x(25).

05 module-state pic x(1).

05 current-operation pic x(25).

05 exception-id pic x(25).

05 exception-loc pic 9(3).

 ...

The type check command yields the following code:

 --- check type of aParamID ---

EVALUATE�aParamID OF ...

WHEN�����CONTINUE

WHEN�����CONTINUE

WHEN�OTHER

MOVE�aParamID����

MOVE RC-NOK TO rc-global OF global-variables

 >>> System Error - Location 4 <<<

MOVE SE-STATE OF module-state of type-constants

TO module-state OF global-variables

MOVE 4 TO exception-loc OF global-variables

MOVE SE-PARAMETER TO exception-id OF global-variables

MOVE ...

PERFORM handle-exception

 >>> End of System Error - Location x <<<

ENDEVALUATE

If the parameter value does not match the type constraints, a system error is produced. The module-
state switches to SE-STATE (system error state) and an automatically generated sequence number
(4 in this case) serves as an identifier for this error code. The identifier is written to the error log and
helps to navigate back to the corresponding location in the source code. The constant SE-
PARAMETER (defined within the data structures) describes the type of the error and is assigned to the
variable exception-id. All the information is used by the routine handle-exception which
finally writes the error log. handle-exception is a common routine of the exception handling
component and is included in every generated Cobol module.

The command %CHECK-RC(RC-OK, RC-NOK) similarly expands to:

IF NOT rc-global of global-variables = RC-OK AND

 NOT rc-global of global-variables = RC-NOK

THEN

 >>> System Error - Location 7 <<<

...

MOVE SE-STATE OF module-state of type-constants

TO module-state OF global-variables

MOVE 7 TO exception-loc OF global-variables

MOVE SE-UNEXPECTED-RC TO exception-id OF global-variables

MOVE rc-global OF global-variables

TO trace-xparam OF trc-buf-filed OF internal-variables (1)

MOVE length OF rc-global OF global-variables

TO trace-length OF trace-buffer OF internal-variables (1)

MOVE ´The return-code is: %s` TO format-string OF internal-variables

PERFORM handle-exception

 >>> End of System Error - Location 7 <<<

ENDIF

3AMPLE�#ODE��3MALLTALK	

The DaRT project at sd&m uses an assertion class (FraAssert3) in Smalltalk which provides a
method that: with: to check a condition. For example

Assert THAT: [’Parameter is defined’] WITH: [aParam isDefined]

checks a parameter. The receiver(Assert)of the message is a global variable. The code behind the
method can be switched by a class method off, which substitutes the class assigned to the variable
Assert by a subclass (FraNoAssert) with an empty implementation. This offers the flexibility to
adjust the assertion checking dynamically.

Of course, in the client class remains a method call without any functionality which produces a run-
time penalty. The following code shows the implementation of the class FraAssert:

FraSysDomainObject subclass: #&RA!SSERT

...

THAT� aStringOrBlock WITH� aBlock

aBlock value == true

ifFalse: [| tmpString |

tmpString := aStringOrBlock isString

ifTrue: [aStringOrBlock]

ifFalse: [aStringOrBlock value].

(self app msg: #Assertion) arg: tmpString; raiseSysError

]

�&RA!SSERT�CLASS�METHODS&OR���CLASS�INITIALIZATION��

INITIALIZE

self on

�&RA!SSERT�CLASS�METHODS&OR���TOGGLE��

OFF

Smalltalk at: #Assert put: FraNoAssert

ON

Smalltalk at: #Assert put: FraAssert

In case of an assertion violation, the method that: with: creates a new assertion message object
(by use of the message identifier #Assertion). The first parameter of the method, which offers a

3 The class is part of the Frammento framework which was developed within the DaRT project. All class names in the

framework have a prefix Fra.

description of the assertion, is passed to the message object as an argument. Finally, the exception is
raised by the message raiseSysError. The code for FraNoAssert is straightforward:

FraAssert subclass: #&RA.O!SSERT

...

�&RA.O!SSERT�CLASS�METHODS&OR���ASSERTION��

that: aString with: aBlock

"Nothing is checked."

+NOWN�5SES

Assertion checking is a topic since the beginnings of structured programming (languages). Neverthe-
less, there still exists little support for executing assertions in popular programming languages (e.g.
Java) and their compilers.

This pattern is mainly influenced by the features of the Eiffel language [Mey88]. Eiffel contains re-
quire and ensure clauses to describe pre- and postconditions, supports the specification of invari-
ants and also offers a check command to formulate assertions. To what extent these commands are
executed at run-time can be configured within the compile environment. In the extreme case they are
just documentations.

Another language supporting executable assertions is Sather [Sather] developed at the University of
Berkeley. Similar to Eiffel the syntax allows pre- and postconditions, invariants, and general asser-
tions. Invariants are placed in a method with standardized name which is called before and after every
public method. In contrast to Eiffel, Sather not assists in inheritance of pre- and postconditions.

The DaRT project at sd&m uses assertions and implements a general assert method as part of their
Frammento framework, as shown in the sample code section.

Most C++ projects we know use special assert macros. For example, BTS [Kun96] use the assert
macro provided by MVC++. Because this macro is compiled in the debug version only, it is used
solely for errors which can be detected while testing. There are other examples in the DATEV,
HYPO and EASY projects. Some distinguish between an AssertDebug macro specialized for de-
bug mode and a general Assert macro for checking conditions during development as well as op-
eration.

Nana [Nana] is a library for annotating C or C++ programs using GNU’s cpp and gdb. It supports
postconditions referring to the before state of an operation and contains macros for existential and
universal quantification (over finite collections).

As already mentioned the TLR project implements standardized error detection features into their
sophisticated Cobol development environment. This environment is also used by and adapted to a
number of other sd&m projects.

&URTHER�2EADING

For detection of memory errors look for available tools on the market if the programming language or
the environment does not support resource management very well. The book by D. A. Spuler [Spu94]
contains useful tips and techniques for instrumentation of C and C++ code.

[LK86] discusses many specification and implementation aspects, such as assertions and defensive
programming, in the context of the CLU language.

A recent research paper [GK97] deals with language and compiler impacts of executable asse rtions.

!CKNOWLEDGMENTS

I would like to thank Jens Coldewey, Wolfgang Keller, Falk Carl, Gerhard Albers, Chad Smith, and
last but not least my shepherd Robert S. Hanmer for their support.

2EFERENCES

[GK97] K. J. Gough, H. Klaeren: Executable Assertions and Separate Compilation. In: Pro-
ceedings of Joint Modular Languages Conference, JMLC’97, Springer, 1997, pp. 41-
52

[JM97] J. M. Jézéquel, B. Meyer: Put it in the contract: The lessons of Ariane.
http://www.eiffel.com/doc/manuals/technology/contract/ariane/index.html,
IEEE Computer, Vol. 30, No. 2, January 1997, pp. 129-130

[Kun96] Th. Kunst: BTS Sidepanel Software. Entwickler-Handbuch. sd&m GmbH & Co. KG,
Munich, April, 1996

[LG86] B. Liskov, J. Guttag: Abstraction and Specification in Program Development. MIT
Press, Cambridge, Mass., 1986

[Mey88] B. Meyer: Object-oriented Software Construction. Prentice Hall, 1988

[Nana] Nana home page: Improved support for assertions and logging in C and C++.
http://www.cs.ntu.edu.au/homepages/pjm/nana-home/

[Sather] Sather home page: http://www.icsi.berkeley.edu/~sather/

[Spu94] D. A. Spuler: C++ and C Debugging, Testing, and Reliability. Prentice Hall, 1994

[TLR95] TLR/IHK: Entwicklerhandbuch. Version 4.0, sd&m GmbH&Co. KG, Munich, 1995

