
Component Con�gurer:
A Design Pattern for Component-Based Con�guration

Francisco Assis Rosa and Ant�onio Rito Silva

INESC/IST Technical University of Lisbon

R. Alves Redol no9, 1000 Lisboa, PORTUGAL

Tel: +351-1-3100287, Fax: +351-1-3145843

ffjar,arsg@albertina.inesc.pt

Abstract

This paper presents a design pattern for component-based con�guration. The pattern focuses

on allowing the con�guration of components along with its inter-component connections. It

allows component creation, destruction and migration without a�ecting other components.

The pattern promotes a decoupling between components and components connection, aiming

at supporting ad-hoc dynamic recon�guration and the migration of components with state

transferring.

1 Intent

Decouples component con�guration from component functionality. It allows component ad-

hoc dynamic con�guration. It aims at providing a con�guration of components with state

transference. It complies with the concept of hierarchical con�guration and migration clustering.

2 Motivation

How can a component-based application design take into account the problem of component

con�guration and in particular issues such as component creation, destruction, migration and

connections changes ?

2.1 Domain Analysis

Con�guration is frequently associated with evolutionary change of critical systems with long

life duration. These systems typically need to evolve as human needs, technology or even

application environment changes [Kramer 85]. These changes can range from changing existing

functionalities to adding new ones.

Application con�guration allows the speci�cation and change at run-time of an application's

building blocks and their collaboration structure.

Con�guration can help solve problems such as:

� Software prototypes development - the use of a con�gurable programming base can help

develop software in which di�erent architectures can be tested with minimum e�ort.

� Flexible systems development - the production of an application with con�guration

capabilities can help obtain a higher
exibility for future application evolution. This

exibility can be of great importance in avoiding future legacy systems.

� Fault tolerance - damage caused by a node fault in a distributed application can be

minimized by recon�guring the elements which form the application. Elements running on

the failed node can be re-deployed on new nodes and their cooperating elements instructed

on where to redirect their cooperation requests.

� Critical systems evolution - systems considered to be critical need the capability of

changing functionalities at run-time without stopping the system.

Due to its importance, a great amount of work has been done in this area and a great number

of bibliographical references can be found. From this bibliography three main concepts can be

identi�ed:

� Component - the basic element of con�guration. These elements can have a mapping to

a piece of software developed in a programming language. In [Wegner 97] components

are de�ned as entities with persistent identity and interfaces whose observable behavior is

governed by a state. Components are almost never self-contained and usually interacting

with other components.

� Connection - the support for cooperation between components. Components should

cooperate using these elements.

� Application structure - description of components and its cooperation structure using

connections. This description can include information such as component mapping to the

existing system nodes.

In [Kramer 85], con�guration is classi�ed into static and dynamic con�guration and some

required properties for dynamic con�guration are presented. Static con�guration is presented

as the process of producing a load image of groups of components for each of the computer

stations in the distributed system. This process is based on an application description using

a con�guration language. Dynamic con�guration is presented as the process of modifying or

extending an application without suspending its execution. This process is driven by change

speci�cations such as, introduction of new components, modi�cation of existing ones and

modi�cation of existing communication patterns.

In [Hofmeister 91], con�guration is classi�ed into module implementation con�guration,

structure con�guration and geometry con�guration. Module implementation con�guration

deals with the capability of specifying and changing a component's implementation. Structure

con�guration deals with the capability of specifying and changing the system's logical

structure, i.e. the elements composing the system and the connections between them.

Geometry con�guration deals with the capability of specifying and changing the mapping

of the application's components onto the distributed architecture. This work addresses a

recon�guration framework applied to the Polylith software bus [Purtilo 90], presenting the idea

of component migration with state transference.

The work of Conic [Magee 89] presents a con�guration language structuring components

hierarchical using the concept of composite component. Conic presents, at the language

speci�cation level, dynamic con�guration although its main contribution is in the scope of static

con�guration.

Design patterns for con�guration issues include design patterns such as the Service

Con�gurator pattern, the Pipes and Filter pattern, the Callback pattern and the Broker pattern.

The Service Con�gurator pattern [Jain 96] deals with service con�guration into applications.

It enables con�guration and recon�guration of services without a�ecting other services.

The Pipes and Filters pattern [Buschmann 96] deals with the con�guration of pipeline based

applications. It allows the change of a pipeline application by introducing, removing or changing

pipeline elements.

The Callback pattern [Berczuk 95] addresses the issue of assembly and processing decoupling,

providing some dynamic con�guration at the component connection establishment.

The Broker pattern [Buschmann 96] presents a pattern for the establishment of cooperation

between elements in a distributed application.

All these patterns present solutions to con�guration issues. None of them however deals with

the concept of component structure, e.g. hierarchical structure, and migration of components

with state transference.

2.2 Example

Con�gurable application development encompasses both static and dynamic con�guration.

In particular dynamic con�guration should consider topics such as changes in component

connections and migration of components with state transfer.

Take the design of a shared agenda.

The shared agenda should have the following functionality:

� There are two kinds of sessions: Manager Session holds an Agenda Manager. Agenda

Session is associated with a user and interacts with an Agenda Manager.

� Users are created, updated and deleted by a Manager Session using its Agenda Manager.

� Users create, update and delete personal (private) appointments through one Agenda

Session.

� Users create, update and delete meetings through one Agenda Session. A meeting requires

its creator and several participants.

� A user consults its agenda to see his appointments and the meetings he should participate

using one Agenda Session.

A possible class diagram for this problem is presented in �gure 1 using the Booch class

diagram notation [Booch 94]. This class diagram presents the necessary classes for the basic

Agenda functionality.

AgendaSchedule

AgendaAppointment

N

N

N
AgendaManager

ManagerSession

AgendaSession

AgendaUser

AgendaMeeting

Figure 1: The shared agenda class diagram

An Agenda Manager will always be in charge of the manipulation of its list of users. Agenda

Sessions will consult the agenda data by using this Agenda Manager.

Con�guration aspects can appear with the following requirement:

� Several sessions may be executing simultaneously but only a single instance of Agenda

Manager may exist at each moment.

� Only the highest ranked Manager Session will own the Agenda Manager. This requirement

corresponds to the idea of the higher ranking manager being the only one allowed to

manipulate users. Lower ranker Manager Sessions will have its managing functionality

deactivated.

Figure 2 presents the architecture for the agenda application. Agenda Sessions communicate

with the Agenda Manager contained in the Manager Session. The Agenda Manager contains

several other objects. It contains user data objects (AgendaUser objects), appointment data

objects (AgendaAppointment objects), and meeting objects (AgendaMeeting objects).

User

Data

App.

User

Meeting

Data
Data

Data

Data
App.

Data

App.

Agenda Manager

ManagerSession

AgendaSession

AgendaSession

AgendaSession

AgendaSession

Figure 2: The shared agenda application

ManagerSession

Data

Agenda Manager

User

App.

Data

Data

App.Data

App.

Data

User

User

Data

Data

App.

Meeting

Data

Meeting

AgendaSession

User

Data

Data

AgendaSession

App.

Data

AgendaSession

App.

Data

AgendaSession

Agenda Manager

ManagerSession

Figure 3: The shared agenda with a new Manager Session

The deployment of a new higher ranker Manager Session will involve recon�guration of the

existing system. The Agenda Sessions should now "talk" with the new Agenda Manager and

the new data managing objects (see �gure 3).

This new con�guration corresponds to migrating the agenda manager and its speci�c data

managing objects to the new Manager Session's location.

The nature of this problem involves the existence of recon�guration capabilities for the

resulting application where the instant or the nature of recon�guration is not de�ned at start.

This problem requires capabilities for migrating existing software components and recon�guring

cooperation connections between components at run-time. It also needs the existence of some

kind of component composition technique along with its migration. This is the case when the

Agenda Manager migration is concerned.

For performance optimization purposes, further recon�guration requirements can be

introduced:

� In order to optimize the data access, whenever an Agenda Session is created, it's user

speci�c data is placed near the Agenda Session. This user speci�c data includes user data

and user appointment data.

Again this requirement can be satis�ed using con�guration. Whenever an Agenda Session is

deployed, it's corresponding user data is migrated from the Manager Session's Agenda Manager

to the Agenda Session. When the Agenda Session concludes its execution, all the important

data is again placed at the Agenda Manager. Figure 4 presents such a performance optimized

architecture.

User

Data

App.

Data Data
App.

User

App.

Data

App.

Data

Data

Data

Data
Data

User

Data

User

User

App.

Data

Meeting

App.

Data

App.

Data

Agenda Manager

ManagerSession

AgendaSession

AgendaSession

AgendaSession

AgendaSession

Figure 4: The shared agenda with data migration

2.3 Problem

Component-based applications are becoming increasingly common. One of the problems which

should be addressed on these applications is the problem of being able to specify and change

the components which form the application and their cooperation structure. How can a design

take these considerations into account for a particular component-based application ?

2.4 Solution Objectives

A solution to this problem should have the following objectives:

� Flexibility - resulting applications should be
exible in the de�nition and change of

components, component communication structure and component placement.

� Static and dynamic con�guration - con�guration abstractions should provide both

static and dynamic con�gurations capabilities.

� Incremental Development - the incremental development of con�guration properties

into components should be an issue. In particular functional application prototypes should

be capable of being enriched with con�guration capabilities in a stepwise process.

2.5 Forces

The problem must consider the following forces:

� Flexibility vs Performance -
exibility is one of the objectives of the solution. However

exibility may result in a loss of application performance. There should be a trade-o�

between these two forces. According to the nature of applications being developed some

issues of
exibility should be tradeable for better performance.

� Incremental Development vs Class Explosion - the process of incremental

development can reduce the complexity of developing applications in one step. However

the cost to pay for this incremental development can be the explosion of classes involved

in the development.

2.6 Solution

The solution is a set of class structures for component-based con�gurable applications

development. This solution takes into account issues such as component deployment in several

"logical nodes", component destruction, establishment and change of connections between these

elements and �nally migration of these components with transference of its state.

The pattern o�ers an abstract structure which should be customized by developers to each

speci�c application.

This solution takes into account the forces previously named. It favors
exibility as opposed

to performance providing capabilities for component-based application composition de�nition

and changes. It also favors incremental development as opposed to class explosion allowing

the development of applications in several steps. Being integrated in the DASCo framework,

this solution will allow the incremental combination of con�guration with other concerns, e.g.

distribution.

3 Applicability

The component-based con�guration pattern should be used whenever one of the following apply:

� The application being developed is component-oriented with interaction between

components.

� The application being developed is bound to su�er high architectural changes during

development, therefore requiring a highly con�gurable and dynamic programming base.

� The application being developed must be dynamically con�gurable to satisfy the

application requirements.

� The concept of con�gurable component clustering is present when thinking of component

migration, i.e. grouping of con�gurable components which act as logical nodes that must

be migrated as one single component.

4 Structure and Participants

4.1 Con�gurable Component Structure

The Con�gurable Component hierarchy provides the necessary abstractions for con�gurable

component construction. A recon�gurable component will be a component capable of altering

its interaction structure with other components and capable of transferring state to other

components of the same class. Figure 5 presents a Booch class diagram [Booch 94] for the

con�gurable component hierarchy. The main elements in this hierarchy are:

...

newCompGen()

stateTransfer()
...

concreteStateTransfer()

removeComponent()

concreteStateTransfer();

A

addComponent()

A

ReconfComponent

removePlug()

addPlug()

changePlug()
N

CompositeComponent

stateTransfer()

newConcreteConfigurator()

getPlug()

Figure 5: The Con�gurable Component Hierarchy

� ReconfComponent - de�nes the necessary interface for a recon�gurable component.

It de�nes the recon�gurable component interface manipulation methods and the

state transfer method for a basic recon�gurable component. Concrete recon�gurable

components should derive from this base class. Methods addPlug, removePlug and

changePlug will allow a recon�gurable component to add new Plugs accessing other

components, change these Plugs or remove them (see section 4.3 for a description on

Plugs). The stateTransfer method will allow the transfer of the component's state to

another component. This method implements the Plug transfer between components

and uses the template method pattern to allow customization of concrete recon�gurable

components. Methods concreteStateTransfer and newCompGen are abstract methods.

In concreteStateTransfer, speci�c class state transference behavior should take place. In

newCompGen, the generation of concrete ComponentGenerator objects should take place.

� CompositeComponent - provides the necessary abstractions for component nesting and

con�guration. A CompositeComponent should be capable of nesting its recon�gurable

components and be capable of directing the con�guration (migration, interface rede�nition,

creation and destruction) of these recon�gurable components. It de�nes a particular

con�guration policy for its enclosed components.

Speci�c con�gurable components should derive either from ReconfComponent or from

CompositeComponent. In both cases this new speci�c component should provide a de�nition for

concreteStateTransfer where the component speci�c state transfer operation should occur and

newCompGen where the generation of a class-speci�c ComponentGenerator should be performed.

4.2 CompositeComponent Structure

The CompositeComponent structure describes the class structure necessary to obtain

con�gurable component nesting and con�guration.

Figure 6 presents a Booch class diagram [Booch 94] for the CompositeComponent class

structure. The main elements in this structure are:

A

removeComponent()

newConcreteConfigurator()

addComponent()

ComponentGenerator

generateRemotePlug()

generateLocalPlug()

generateComponent()
A

AN

NameManager

Configurator
A

A

ReconfComponent

addPlug()

removePlug()

changePlug()

changeConnection()

configure()

generateComponent()

destroyComponent()

moveComponent()

CompositeComponent

createComponentIn()

getPlug()

bind()

resolveName()

unbind()

getPlug()

getComponent()

configureNode()

configureApp()

stateTransfer()

concreteStateTransfer()

newCompGen()

stateTransfer()

Figure 6: CompositeComponent class structure

� CompositeComponent - as previously presented.

� ReconfComponent - as previously presented.

� NameManager - associates components names with its location (its Plug). It will be capable

of obtaining a component's location from it's name through the use of it's resolveName

method. Registration and de-registration of name/location pairs is performed through the

use of the bind and unbind methods.

� Con�gurator - implements the basic interface for component con�guration. Possesses

all the necessary interaction behavior between con�gurators to attain con�guration.

It is responsible for the con�guration of the CompositeComponent at the time of its

creation. It has three methods for this con�guration: con�gure, con�gureNode and

con�gureApp. The con�gure method calls the con�gureNode method followed by a

call to the con�gureApp method. It should be used for full CompositeComponent

con�guration. At con�gureNode, node-speci�c con�guration is performed namely

NameManager initialization, generation and registration of plugs for external requests.

At con�gureApp, application-speci�c con�guration is performed, namely sub-component

generation and connection establishment.

ReconfComponents placed inside the Con�gurator's CompositeComponent are also

con�gurated by the Con�gurator. Methods generateComponent, destroyComponent,

moveComponent and changeConnection handle the con�guration of ReconfComponents

placed at CompositeComponent. Method createComponentIn handles requests for the

creation of components on remote CompositeComponent.

� ComponentGenerator - implements the component generation functionality. It decouples

the component con�guration (placed in Con�gurator) from component generation.

This decoupling allows a generic behavior of the Con�gurator class. Application

speci�c behavior such as creation of application-speci�c components is placed in the

ComponentGenerator class.

4.3 Plug Structure

Con�gurable components should communicate using Plugs. Plugs will be responsible for inter-

component cooperation. To achieve maximum con�guration capabilities all cooperation between

components should be performed through these elements. Figure 7 presents the component

cooperation structure.

LPlug

A

RPlug

A

A

NameManager

N

ReconfComponent

N

Figure 7: Plugs for Component cooperation

The main elements in this structure are:

� ReconfComponent - it will have an LPlug and a set of associated RPlugs. To a

ReconfComponent its corresponding LPlug will represent the entry point for requests from

other recon�gurable components. The set of associated RPlugs will represent remote

representations of other components.

� LPlug - intercepts any order coming from a RPlug object. This class represents the entry

point to request from other components.

The LPlug delivers processing requests to its related ReconfComponent.

� RPlug - o�ers a local representative of a remote component. RPlugs are associated with the

Name of the remote component. Using NameManager's resolveName method, an RPlug

can reach its corresponding LPlug for communication.

RPlugs decouple a component from its remote component location, therefore allowing

remote component recon�guration.

� NameManager - as previously presented.

From classes RPlug and LPlug, speci�c cooperation plugs are derived. These speci�c Plugs

should conform to its corresponding component class interface.

To achieve maximum con�guration, a recon�gurable component's code should use references

to these RPlugs instead of referencing other con�gurable components directly.

5 Collaborations

As far as con�guration is concerned there are four important functionalities which must be

supported by the pattern: recon�gurable component generation, recon�gurable component

migration, connection establishment between recon�gurable components and recon�gurable

component destruction.

5.1 Recon�gurable Component Generation

A Recon�gurable Component generation involves cooperation between classes Con�gurator,

CompositeComponent, NameManager and ComponentGenerator. A component generation is

triggered by a request to Con�gurator. The �rst step for the Con�gurator is to request a

new name from NameManager. The Con�gurator then interacts with ComponentGenerator

which is responsible for the new component allocation and creation of the component's LPlug

for future cooperations. The name obtained from the NameManager can now be associated

with the component created by ComponentGenerator. The generation process ends with the

Con�gurator placing the new generated component in its corresponding CompositeComponent.

Figure 8 presents this collaboration.

bind(name,comp)

name=generateName()

bind(comp,plug)

generateComponent(compGen)

:Configurator

:NameManager

:ComponentGenerator

:ReconfComponent
comp

compGen
:LPlug
plug

:CompositeComponent

addComponent(comp)

plug=generateLocalPlug() new()

comp=generateComponent() new()

Figure 8: Recon�gurable Component Generation Collaboration Diagram

5.2 Recon�gurable Component Migration

A recon�gurable component migration involves cooperation between classes Con�gurator,

NameManager and ReconfComponent. A component migration is triggered by a request to

Con�gurator. The �rst step for the Con�gurator is to obtain the component associated

with the given name. After this, the Con�gurator must obtain from this ReconfComponent

a ComponentGenerator object capable of generating an instance of this ReconfComponent.

This is done by calling the newCompGen method on ReconfComponent. Using this

ComponentGenerator the Con�gurator cooperates with a remote Con�gurator in order to create

the migrating component on another CompositeComponent. Next the Con�gurator interacts

with the ReconfComponent by ordering it to transfer its state to the new component on the

remote CompositeComponent. It is then that the Con�gurator renames the new component

giving it the name of the old component and unregistering the location of the old component

from NameManager. The process ends by destroying the old component. Figure 9 presents this

collaboration.

unregister()

plug=createComponentIn(compGen,nameTo)

generateComponent(compGen)

compGen=newCompGen()

destroyComponent(comp)

stateTransfer(plug)

:Configurator :NameManager :ReconfComponent
comp

moveComponent(nameComp,nameTo)

comp=getComponent(nameComp)

remote
:Configurator

local

Figure 9: Recon�gurable Component Migration Collaboration Diagram

5.3 Reconnection Between Components

A Reconnection operation between components involves cooperation between classes

Con�gurator, NameManager, ReconfComponent and RPlug. A component reconnection is

triggered by a request to Con�gurator. This request identi�es the original component whose

connection must be changed, the connection that must be changed and the component to

which the connection must be redirected to. The �rst step for the Con�gurator is to obtain

the component whose connection must be changed. From this component the Con�gurator

component can obtain the RPlug used as interface. Finally the connection can be redirected by

invoquing the recon�gureConnection method in RPlug. Figure 10 presents this collaboration.

:Configurator :NameManager :ReconfComponent :RPlug
comp plug

changeConnection(compName,itfName,nameTo)

comp=getComponent(compName)

reconfigureConnection(nameTo)

plug=getPlug(itfName)

Figure 10: Reconnection between components

5.4 Recon�gurable Component Destruction

A recon�gurable component destruction involves cooperation between classes Con�gurator,

CompositeComponent and NameManager. A component destruction is triggered by a request

to Con�gurator. The Con�gurator interacts with NameManager obtaining the LPlug for this

component. For this LPlug the Con�gurator gets its location. It now interacts again with

NameManager un-binding the location and LPlug from it. As a �nal step it removes the

component from its CompositeComponent and �nally un-binds the component's name from the

NameManager. Figure 11 presents this collaboration.

plug=getPlug(comp)

:Configurator :NameManager

unbind(comp,plug)

removeComponent(comp)

name=getName(comp)

unbind(name,comp)

destroyComponent(comp)

:CompositeComponent

Figure 11: Recon�gurable Component Destruction Collaboration Diagram

6 Consequences

The use of the pattern has the following advantages:

� Con�guration/computation decoupling - the use of this pattern allows strong decoupling

between con�guration and computation. The component's development e�ort can be

directed to the functionality development. Con�guration aspects are well isolated from

the component's functionality and partially automated.

� Dynamic application development - the use of this pattern allows the development of

highly dynamic applications. The use of elements such as RPlug and LPlug introduces

location transparency at the component level allowing, among other operations, component

migration to proceed transparently for components using migrating components.

� Con�guration centralization - the con�guration aspects of applications is located within

the Con�gurators objects. These elements are the ones responsible for the application's

structure therefore simplifying any application con�guration code replacement.

� Concern separation - the presented pattern provides a solution to the speci�c concern of

con�guration. The pattern presents a design solution which promotes the decoupling of

the con�guration concern from other concerns such as naming and distribution.

� Migration of components - the pattern foresees the possibility of component migration

with state transfer in opposition to simple stateless component migration.

The use of the pattern has the following disadvantages:

� Added complexity - the use of this pattern causes some class explosion which adds

complexity to the overall design.

� Performance reduction - due to the introduction of a series of indirections, the use of the

pattern can reduce performance.

7 Implementation

Several implementation variations can be introduced when implementing this pattern:

NameManager variations, Rplug's Name evaluation variation and distribution introduction

variation.

7.1 NameManager Variation

Di�erent NameManagers can be used with this pattern. The used Name's properties can have

some impact on the degree of con�guration o�ered by the pattern.

In [Sousa 96] di�erent variants for Names are presented.

Names are universal if they are valid in all applications that refer to an object and local if

otherwise. Names are absolute if they refer to the same object in all applications where its valid

and relative if they refer to di�erent objects in di�erent applications. Names can be pure if they

contain no information concerning the objects they denote and impure otherwise.

The presented pattern deals with names as universal, absolute and pure. Di�erent properties

can be admitted, however this use of di�erent properties can have some in
uence in the degree

of con�guration allowed.

Universal names are allowed by having every name being resolvable on every

CompositeComponent. Local names are allowed simply by having names which are local to

CompositeComponents.

Absolute and relative names can be supported in a similar way. Absolute names are

supported by all names being interpreted the same way on every CompositeComponent and

relative names by having di�erent name interpretation on di�erent CompositeComponents.

Pure and impure names are also allowed by the pattern. The resolution of names in the case

of impure names will be greatly simpli�ed. Impure names will be built out of a component's

location and can therefore represent direct references to a component.

The nature of the application can therefore allow di�erent properties for names.

Applications with a great number of component reference exchange between Composite-

Components would be better suited to use universal and absolute names.

Applications in which clusters of CompositeComponents can be identi�ed could use local and

relative names.

Applications where recon�guration is strictly at the component creation, destruction

and connection re-establishment level could use impure names and gain the performance

enhancement of using these names while applications using migration should use pure names.

Being aimed at applications with a great number of component references exchanged, where

recon�guration includes migration the pattern is better suited for universal, absolute and pure

names.

7.2 RPlug's Name Evaluation Variation

The instant when Names are evaluated at the RPlug objects can have some impact on the

implementation of this pattern. Two variations can be implemented: evaluation at the time of

access and evaluation at the time of creation.

Evaluation at the time of access means that every time a RPlug needs to access its

corresponding LPlug, its Name is resolved by the NameManager. This basically means that

there shouldn't be any "dangling references" to destroyed or migrated LPlugs.

Evaluation at the time of creation means that Names are evaluated when the RPlug is

created. This results in "dangling references" to destroyed or migrated LPlugs. The solution

to such a problem involves enhancing the LPlug objects with the capability to reference not

only ReconfObjects but also, if necessary, other RPlug objects and by this way implementing

forwarding functionalities. LPlug components should also keep a counter of RPlug references

to it. Each time a LPlug object is ordered to be destroyed it should check its counter and

if necessary stay alive to receive incoming requests. If destruction should take place, LPlug

components should return error messages to the requesting RPlugs which in turn should re-

evaluate its Name. If migration should take place, LPlug should respond by redirecting the

request to a new RPlug to the new component location. This variation involves some kind of

garbage collection which is implemented by the existence of the counter and operations resulting

from its change.

The nature of the application can have an in
uence on the choice of the variation to be

used. Applications where component migration seldom occurs will be more suited to use the

evaluation at the time of creation variation. On the other hand, applications where component

migration may be frequent gain by using the evaluation at the time of access variation.

7.3 Distribution Variation

Distribution can also be added to the pattern. The pattern is well suited for compliance with

concepts such as nodes and distributed objects.

The Con�gurer pattern introduces two levels of abstraction: ReconfComponent and

CompositeComponent. From the distribution point of view, top-level CompositeComponents,

i.e. CompositeComponents not contained in others, are well suited for node representation.

Contained Components can be con�gured at each CompositeComponent and migrated between

CompositeComponents.

Since communication between con�gurable components occurs via RPlug and LPlug objects,

distribution can be introduced by enhancing classes RPlug and LPlug in order to support

distribution. One possible implementation to this enhancing could be the combination of these

elements with distributed proxies elements. Also locations used by RPlugs should be altered to

express distributed locations.

There are to ways of enhancing these classes: delegation and inheritance. Using delegation,

one can enhance these classes by having RPlugs and LPlugs reference its distributed proxies

and by using them to send out its messages. Using inheritance, one can enhance these classes

by creating a class DistRPlug derived from both RPlug and the distributed Proxy. Distributed

communication can thus be achieved by using this class. The same process can be done on the

LPlug class.

Distributed proxies will also provide a way to encapsulate speci�c communication

mechanisms. These proxies can be socket-based, pipe-based, can use framework mechanisms

such as Reactor and Acceptor [Schmidt 96] from theACE framework [Schmidt 94] or even systems

such as Orbix [Technologies 96] for component communication purposes.

A possible variation using the ACE framework can be shown.

The Component Con�gurer pattern is combinable with the Service Con�guration pattern

allowing the jump from the higher level components to the low-level socket-based connection.

Going from logical distribution to physical distribution involves identifying which are

the components to be placed in diferent physical nodes. As previously stated, top-level

CompositeComponents allow this identi�cation.

The physical distribution implementation using the Service Con�guration pattern can be

achieved by adaptation mainly at the Plugs level in the following way:

� Each top-level CompositeComponent will have one ACE Service Con�g instance and one

ACE Acceptor derived class instance. This ACE Acceptor derived class instance will be

responsible for the acceptance of all communications into this physical node and will be

responsible for the generation of node-speci�c ACE Svc Handler derived classes instances.

Instances from classes derived from ACE Acceptor and ACE Svc Handler will be registered

into the ACE Service Con�g instance.

The ACE Svc Handler derived class instances will be responsible for communication

into the node. They will be in charge of receiving incoming messages, and calling the

correct method on the correct LPlug using the correct parameters. The LPlug/method

determination will be based on identi�ying information sent in the message.

� Component Names are resolvable into the socket address of it's corresponding top-level

CompositeComponent's ACE Acceptor derived class instance.

� An RPlug connecting to a remote component will use an ACE Connector derived class

instance to establish connection to the remote node. It will then use, after a successfull

connection, an ACE Svc Handler derived class instance for node interaction. This

ACE Svc Handler derived class instance will be responsible for message marshalling with

addition of target component and method identi�cation.

Only one pair ACE Connector / ACE Svc Handler derived classes instances will exist on

a node for connection to one other remote node, being this pair shared between RPlugs

connecting to that same node.

This way there will be at most one opened socket between each pair of physical nodes and

communication will occur through the ACE framework.

Figure 12 and �gure 13 presents the structure of the use of the Service Con�gurator pattern

in the Con�gurer pattern.

LPlugn

LPlug2

LPlug1

NodeAcceptor

ACE_Service_Config

ACE_Svc_Handler

ACE_SOCK_STREAM, ACE_MT_SYNCH

NodeReceiver

ACE_Acceptor

NodeReceiver, ACE_SOCK_Acceptor

Component Configurer PatternService Configurator Pattern

Figure 12: Local Plug class diagram using the ACE framework

This way, the Service Con�gurator pattern complements the Component Con�gurer pattern

by allowing process service con�guration as opposed to component con�guration.

8 Sample Code

The presented pattern has been applied to the shared agenda example.

Classes AgendaUser, AgendaAppointment and AgendaMeeting (from this point on referred

to as the agenda speci�c classes), should act as recon�gurable components. Objects from these

classes will have to be able to migrate with state transference. These classes will inherit from

ReconfComponent the recon�gurable component behavior. For each of these classes, abstract

methods concreteStateTransfer and newCompGen will have to be de�ned. Also, a remote plug

class and a local plug class will be de�ned for each class. To attain maximum con�guration

ACE_Svc_Handler

ACE_SOCK_STREAM, ACE_MT_SYNCH

ACE_Connector

NodeSender, ACE_SOCK_Connector

NodeConnector

NodeSenderRPlug1

RPlug2

RPlugn

ACE_Service_Config

Component Configurer Pattern Service Configurator Pattern

Figure 13: Remote Plug class diagram using the ACE framework

capabilities, all inter-component communication should now be performed through this plug

classes.

The following code presents class AgendaUser and its concreteStateTransfer method. As

presented, this method makes use of an AgendaUser speci�c remote plug in order to communicate

with the remote AgendaUser for state transference.

class AgendaUser: public ReconfComponent

{

public:

AgendaUser (char*, CompositeComponent*);

void addAppointment (RPAgendaAppointment*);

void addMeeting (RPAgendaMeeting*);

char* getUserName (void);

RPlug* concreteStateTransfer (Name*);

ComponentGenerator* newCompGen (void);

private:

char _userName[30];

List<RPAgendaAppointment> _appList;

List<RPAgendaMeeting> _meetList;

};

RPlug* AgendaUser::concreteStateTransfer (Name* toName)

{

// _parentComponent is inherited from ReconfComponent and

// references it's parent CompositeComponent

RPAgendaUser* rpau = new RPAgendaUser(_parentComponent,toName);

ListIterator<RPAgendaAppointment> ait(&_appList);

RPAgendaAppointment* el1;

while (!ait.over())

{

el1 = ait.getElement();

if (el1)

rpau->addAppointment(el1);

ait.next();

}

ListIterator<RPAgendaMeeting> mit(&_meetList);

RPAgendaMeeting* el2;

while (!mit.over())

{

el2 = mit.getElement();

if (el2)

rpau->addMeeting(el2);

mit.next();

}

return rpau;

}

Class AgendaManager acts as a composite component, more speci�cally as composite of the

agenda speci�c classes. Objects from this class must be able to migrate, since AgendaManager

must migrate between ManagerSessions, but must also be able to con�gure any agenda speci�c

object which it contains. Class AgendaManager can therefore be enhanced by inheriting from

class CompositeComponent as presented in the following code.

class AgendaManager: public CompositeComponent

{

public:

AgendaManager (CompositeComponent*);

~AgendaManager (void);

RPAgendaUser* addUser (char*);

RPAgendaUser* getUser (char*);

List<RPAgendaUser>* getUserList (void);

RPAgendaAppointment* addAppointment (RPAgendaUser*, AgendaDate&, AgendaTime&);

RPAgendaMeeting* addMeeting (RPAgendaUser*, AgendaDate&, AgendaTime&);

// Defined for CompositeComponent inherited behavior

Configurator* newConcreteConfigurator ();

// Defined for ReconfComponent inherited behavior

RPlug* concreteStateTransfer (Name*);

ComponentGenerator* newCompGen (void);

private:

List<RPAgendaUser> _userList;

};

Finally, classes ManagerSession and AgendaSession act as composite components. A

ManagerSession object will be a holder for an AgendaManager object. To satisfy the higher

rank ManagerSession requisite, the AgendaManager contained in a ManagerSession may

have to migrate between ManagerSessions. This migration will be controlled by the higher

ranked ManagerSession's Con�gurator. This con�gurator will collaborate with the current

ManagerSession AgendaManager holder to perform this migration.

The following code presents the AgendaManager migration procedure implemented using

the functionalities in the pattern. The ManagerSession's Con�gurator is used to perform the

migration of the AgendaManager object to the higher ranked ManagerSession.

Name* ManagerSession::giveUpAgendaManager (Name* giveTo)

{

AgendaManager* am = getAgendaManager();

if (am)

{

Name* name = _nameManager->getName(am);

if (giveTo && name)

{

_configurator->moveComponent(name,giveTo);

setAgendaManager(0);

return name;

}

}

return 0;

}

Figure 14 presents a diagram with the nested structure promoted by the use of this

pattern. The diagram presenting a speci�c scenario of the shared agenda shows how

AgendaManager objects will be placed inside ManagerSession objects and be con�gured

by ManagerSessionCon�gurator using ManagerSessionNameManager. Speci�c agenda classes

objects such as AgendaUser, AgendaAppointment and AgendaMeeting will be placed

inside AgendaManager objects and by con�gured by AgendaManagerCon�gurator using

AgendaManagerNameManager. AgendaManager objects will migrate between ManagerSession

objects taking along all its agenda speci�c objects.

AgendaMeeting

AgendaManager
NameManager

ManagerSession
Configurator

Configurator

AgendaUser

AgendaManager

ManagerSession
NameManager

AgendaAppointment

AgendaUser

ManagerSession

AgendaManager

Figure 14: The Pattern applied to the Distributed Agenda

9 Known Uses

The presented pattern was developed in the scope of the DASCo framework [Silva 95]. Within

DASCo this pattern represents a solution to the con�guration concern. According to the DASCo

development process, the pattern may be combined with other concerns, namely Naming and

Replication [Silva 96].

The concept of ReconfComponent as primitive component and CompositeComponent as

composite component is used in the con�guration language Darwin [Magee 94].

The concept of con�gurator cooperation for the application con�guration is used in the Olan

system [Belissard 96].

10 Related Patterns

The presented pattern is related to the following patterns:

� Composite [Gamma 95] - the CompositeComponent represents a use of the Composite

pattern.

� Template Method [Gamma 95] - the use of methods such as concreteStateTransfer in the

ReconfComponent class, represents a use of the Template Method pattern.

� Proxy [Gamma 95]- the use of classes such as RPlug and LPlug can be seen as a particular

use of the Proxy pattern.

� Abstract Factory [Gamma 95]- class ComponentGenerator represents a use of the Abstract

Factory pattern. Classes derived from ComponentGenerator will encapsulate the

generation of concrete ReconfComponent, LPlug and RPlug objects,

� Factory Method [Gamma 95]- method newCompGen in class ReconfComponent represent

a use of the Factory Method pattern.

� Distributed Proxy [Silva 97] - RPlug and LPlug classes can make use of the Distributed

Proxy pattern as a mean of supporting application partitioning.

� Service Con�gurator [Jain 96] - this pattern deals with service con�guration into

components. It aims at internal server component con�guration, addition, change and

deletion of component services, as opposed to inter-component con�guration with addition,

change and deletion of server components.

� Pipes and Filters [Buschmann 96] - this pattern again deals with the internal con�guration

of pipeline based components.

� Callback [Berczuk 95] - the pattern for the separation of assembly and processing can

provide a way for component interaction. The structure of the pattern foresees the

existence of some dynamic con�guration allowing the connection establishment between

components.

� Broker [Buschmann 96] - the existence of aNameManager class in the proposed pattern can

be related in some way to the broker pattern. The NameManager is used as a repository

of available Names and locations used to establish communication between components.

Acknowledgments

The authors would like to thank Steve Berczuk for his valuable suggestions during the

shepherding process.

References

[Belissard 96] Luc Belissard and Michel Riveill. From Distributed Objects to Distributed
Components: the Olan Approach. Workshop Putting Distributed Objects to Work,

ECOOP'96, July 1996.

[Berczuk 95] S. Berczuk. A Pattern for Separating Assembly and Processing. In Pattern Languages

of Program Design, Reading, MA: Addison-Wesley, 1995.

[Booch 94] Grady Booch. Object-Oriented Analyis and Design with Applications. The
Benjamin/Cummings Publishing Company, Inc., 1994.

[Buschmann 96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

[Gamma 95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[Hofmeister 91] C. Hofmeister and J. Purtilo. A Framework for DynamicRecon�guration of Distributed
Systems. In Proceedings of the 11th International Conference on Distributed Computing

Systems, pages 560{571, 1991.

[Jain 96] Prashant Jain and Douglas Schmidt. Service Con�gurator: A Pattern for Dynamic
Con�guration and Recon�guration of Communication Services. In 3rd Annual Pattern

Languages of Programming Conference, Allerton Park, Illinois, 1996.

[Kramer 85] J. Kramer and J. Magee. Dynamic Con�guration for Distributed Systems. IEEE

Transactions on Software Engineering, SE-11(4):424{436, April 1985.

[Magee 89] Je� Magee, Je� Kramer, and Morris Sloman. Constructing Distributed Systems in
Conic. IEEE Transactions on Software Engineering, 15(6):663{675, June 1989.

[Magee 94] J. Magee, N. Dula, and J. Kramer. A Constructive Development Environment for
Parallel and Distributed Programs. Technical report, Department of Computing,
Imperial College, London SW7 2BZ, UK, 1994.

[Purtilo 90] J. Purtilo. The Polylith Software Toolbus. Technical Report CSD 2469, University of
Maryland, 1990.

[Schmidt 94] Douglas C. Schmidt. The ADAPTIVE Communication Environment: An Object-
Oriented Network Programming Toolkit for Developing Communication Software. In
11th and 12th Sun User Group Conferences, San Jose, California and San Francisco,
California, December and June 1994.

[Schmidt 96] Douglas Schmidt. A Family of Design Patterns for Flexibly Con�guring Network
Services in Distributed Systems. In International Conference on Con�gurable

Distributed Systems, Annapolis, Maryland, May 1996.

[Silva 95] Ant�onio Rito Silva, Pedro Sousa, and Jos�e Alves Marques. Development of Distributed
Applications with Separation of Concerns. In Proceedings of the 1995 Asia-Paci�c

Software Engineering Conference APSEC'95, Brisbane, Australia, December 1995.
IEEE Computer Society Press.

[Silva 96] Ant�onio Rito Silva, Fiona Hayes, Francisco Mota, Nino Torres, and Pedro Santos.
A Pattern Language for the Perception, Design and Implementation of Distributed
Application Partitioning. Presented at OOPSLA'96 Workshop on Methodologies for

Distributed Objects, October 1996.

[Silva 97] Ant�onio Rito Silva, Francisco Assis Rosa, and Teresa Gon�calves. Distributed Proxy:
A Design Pattern for Distributed Object Communication, September 1997. Submitted
to the Fourth Conference on Pattern Languages of Programs, PLoP '97.

[Sousa 96] Pedro Sousa, Ant�onio Rito Silva, and Jos�e Alves Marques. Naming and Identi�cation in
Distributed Systems: A Pattern for Naming Policies. Conference on Pattern Languages

of Programs (PLoP'96), September 1996.

[Technologies 96] IONA Technologies. Building Distributed Applications with Orbix and CORBA, 1996.

[Wegner 97] Peter Wegner. Frameworks for Active Compound Documents. Technical report, Brown
University, 1997.

