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 ABSTRACT

The paper describes a set of patterns that extend the pattern language proposed in [Meszaros96] for
improving the capacity of reactive systems. The intent of these patterns is to identify some specific
causes that limit the efficiency of a distributed layered client-server system with multi-threaded
servers, and to find appropriate corrective measures. The type of systems considered here is a subclass
of the larger category of reactive systems, and the new patterns are dealing with their specific
performance characteristics. The effects of the patterns are illustrated with performance measurements
conducted on a layered client-server system.

INTRODUCTION

Problem Domain

Many distributed applications are based on the client-sever paradigm and use various kinds of
software servers (as for example, name servers, databases, network file servers, web servers, etc.) The
performance of such systems depends strongly not only on the contention and queueing delays for
hardware devices (such as processors, I/O devices, communication networks, etc.) but also on the
contention for software servers. In order to satisfy the requests of its clients, a software server needs to
access the services of one or more subservient servers, which may be either hardware or software. For
example, a web server executing a client requests runs on its own processor and  makes alternate
requests to a network file server and a database server, each of which, in turn, needs the services of a
processor and of one or more I/O devices (see Figure 1). Under high load, the system capacity may be
limited either by one of its hardware resources or by one of its software servers. A typical (but not the
only) class of such systems is known as a
three-tier client/server architecture, used
particularly for large business applications
[Aarsten+96], [Hirschfeld96]. The system
functionality is distributed into three tiers:
front-end clients, middle application servers
and back-end database server.

For performance analysis purposes, it is
useful to represent a system with software
servers as a layered client/server model (see
Figure 1), in the form of a directed acyclic
graph whose nodes represent clients and
servers, and whose arcs denote service
requests. The software entities are
represented as parallelograms, and the
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hardware devices as circles. The nodes with outgoing and no incoming arcs are the clients, the
intermediate nodes with both incoming and outgoing arcs are usually software servers, and the leaf
nodes are hardware servers. It is worth to mention that a layered system does not imply a strict
layering of servers (for example, servers in the same layer can call each other or can skip over layers).

The layered client/server model has been developed in previous work as a performance modelling
approach that extends the well-known Queueing Network model in order to capture and solve
analytically the performance characteristics of systems with software servers [Woodside+95],
[Rolia+95], [Franks+96].

Set of Proposed Patterns

The layered client/server systems, as all reactive systems, have to meet performance requirements at a
reasonable cost  under high loads. The set of patterns proposed in the paper extend the pattern
language for improving the capacity of reactive systems introduced in [Meszaros96] by considering
cases where the limiting capacity factor is a software server. The new patterns are also complementary
to another pattern language regarding the distribution of functionality in three-tier client/server
systems presented in [Aarsten+96], [Hirschfeld96].

Figure 2 shows the patterns described  in the paper and their relationships with some of the patterns
from [Meszaros96] (shown in boxes) . The  patterns in plain boxes are described in detail in the
reference, those in dashed boxes only  mentioned briefly. In order to limit the size of the diagram,
only those patterns from [Meszaros96] which have a direct relationship with the newly proposed
patterns are shown here.

Capacity Bottleneck pattern [Meszaros96] deals with identifying the limiting factor in a system’s
capacity, leading to a number of patterns related to the type of resource that is the actual limit:

Fig. 2. The relationships between the proposed patterns and the pattern language
for improving the capacity of reactive systems introduced in [Meszaros96]
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Processing Capacity, Memory Capacity,  Messaging Capacity. This paper shows that another type of
limiting resource exists -- a software server, as described in the Intermediate Server Bottleneck
pattern. The so-called software bottleneck phenomenon was described in previous performance
analysis work, such as [Neilson+95] and [Franks+96], but it was never expressed in pattern form, nor
was it related to existing pattern languages. Server Multi-threading pattern shows how to alleviate
such a bottleneck by increasing the concurrency level of the server. It is specialized by the next three
patterns, Thread per request, Thread per session and Thread pool, each describing a different solution
applied in a different context. Minimized  Serial Thread Management  shows how to further increase
the system  efficiency when using the thread pool technique. Multiprocessor pattern points to a
hardware solution for improving the system performance. The patterns are written according to the
style and techniques presented in [Meszaros+96].

In this work we have not considered shedding-the-load strategies and the related patterns from
[Meszaros96] which are very appropriate for “open” reactive systems, such as telephone switches,
where the arrival rate of requests varies widely and may go, at times, beyond the capacity of the
system. We have considered here “closed” systems with a limited number of clients which  do not
give up on their requests, wait patiently to be served and may send a new request only after the
previous one has been completed. However, the layered client-server systems may have open arrivals,
in which case shedding-the-load patterns will also apply.  Moreover, the patterns introduced in this
paper are not limited to closed layered server systems, but can be applied to any reactive systems with
software servers.

INTERMEDIATE SERVER BOTTLENECK

Problem
A software server receiving requests from multiple clients may  be the limiting resource in the system
at high request rates, becoming the system bottleneck. Its request input queue builds up faster than
any other queues, and the server is the first element to saturate under increasing load by reaching its
maximum utilization. An intermediate server bottleneck prevents its subservient hardware resources
from being used at their full capacity. How do we recognize when the system bottleneck is a software
server and not a hardware one?

Context
We are using a system with one or more software servers, that can be represented as a layered
client/server model. A software server may offer a range of service types to its clients, each one with
different execution times and resource requirements. The capacity of a software server (i.e., the
maximum rate at which the server is able to complete requests) can be determined by considering that
the server is busy 100% of the time. The capacity depends on  the following elements:
• the number of requests processed  simultaneously by the server (not those waiting in the input

queue)
• the average time for a request that is a weighted average of service times for different request

types
• the service time for a given request type that is the sum of server’s own execution time plus the

nested services provided by the subservient servers.

Capacity   =  Nb_simult_requests / Average_service_time

Average_service_time  =  Sum ( Request_type_service  *  Percentage_of_this_request_type)

Request_type_service  = Own_excecution_time  +  Sum (Nested_service_times)

The own execution time in the last relation includes both the actual CPU time used by the server on
the behalf of a given request type, and the waiting delay for the CPU. The nested service times also
include actual service plus queueing. It can be seen from these relations that the capacity of a software
server cannot be easily estimated with a simple back-of-the-envelope approach, because it depends not
only on the server’s requirements for resources, but also on the queueing delays in the whole system.



Forces
• We want a software system able to offer a high capacity by using the available hardware resources

as efficiently as possible.
• The system bottleneck must be correctly identified, since any attempt to improve the overall

performance has to deal with the bottleneck first.
• Increasing the capacity of a resource that is not the bottleneck will have little or no effect on the

overall system performance.
• An intermediate server “feeds” work to its subservient servers, and may become the limiting

factor in the system if it’s unable to keep them busy enough. In other words, an intermediate
server is the bottleneck if it becomes saturated while its subservient servers are under-utilized.

• Work propagates top-down, whereas utilization propagates bottom-up. A saturated server tends to
saturate its users.  The primary limiting factor in such a case is the lower level server.

Solution
Understand which element is limiting the capacity of the system by analyzing the utilization of
different servers at high load. The limiting element may be either  a leaf or an intermediate node.
If all the leaf nodes in the graph are under-utilized while one or more intermediate nodes are highly
utilized, then we have an intermediate server bottleneck. The bottleneck is a saturated software server
whose subservient servers are all under-utilized. A larger difference in utilization means a stronger
bottleneck. Figures 3.a and 3.b illustrate two cases of software bottleneck in a simple layered
client/server system with a mid-level and a low-level software server. Different degrees of shading
represent different utilization levels, the darkest corresponding to components that are busy all the
time. Note that a bottleneck located at a higher-level software server will “feed” less work to the lower
level servers, enforcing stronger limitations on the system capacity. For example, the case shown  in
Figure 3.a  is more inefficient than the one in Figure 3.b. In order to alleviate a software bottleneck,
apply the rest of the patterns presented in the paper.
If a leaf node has a very high utilization, then it represents a hardware bottleneck, which should be
treated with one of the capacity bottleneck patterns presented in [Meszaros96]. In general, a system
with a hardware bottleneck is more efficient than a similar one with a software bottleneck, since the
hardware resources are better utilized.
Note that a highly utilized software server with at least one saturated subservient server is not the
bottleneck -- the subservient server is. A special case is that of a software server using a single
subservient server (as for example, a CPU-bound software server running on its own CPU). Both
servers will have the same utilization; if both are saturated, the lower server is the bottleneck.
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Fig. 3 Example of software and hardware bottleneck (degrees of shading represent utilization
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Example
Consider the layered system from Fig.3
implemented and measured as described
in the appendix. The mid-level server is
single-threaded and can process only one
request at a time. The measurements for
the utilization of different servers and
the system throughput are shown in
Fig.4. (The utilization represents the
percentage of time a server is busy
serving requests, including the waiting
for nested services).  The system reaches
saturation at about 11 clients, beyond
which the throughput holds steady
because the system has reached its
maximum capacity. The limiting factor
can be identified from the utilization of
different servers at high load: the mid-
level server is 100% busy, while its
CPUs and the low-level server are
terribly under-utilized at  below  20%
(the utilization curves for the CPU and
the low-level server are overlapped in
the figure). The mid-level server is the
bottleneck.

Related Patterns
Intermediate Server Bottleneck is the
entry point to a number of patterns
described below, whose intent is to
increase the capacity of software servers
and  to alleviate cases of software
bottleneck, improving therefore the
overall system performance.

SERVER MULTI-THREADING

Problem
The capacity of a layered system is limited by one of its intermediate servers, which prevents the
hardware resources from being used efficiently. How can we relieve this type of bottleneck?

Context
Apply this pattern when a software server with more than one subservient server cannot “feed”
enough work to its subservient servers to keep them busy. Such a case occurs, for example, when a
server was programmed in a “sequential” style, using blocking I/O and communication primitives. Its
serial behaviour prevents the subservient servers from working in parallel on different requests.
If an intermediate server requires only a single CPU (without any I/O or other subservient server) then
there is nothing to gain by multi-threading, because there is no potential for actual parallel execution
of different requests.

Forces
• Using concurrent servers that process requests in parallel leads to more efficient systems.
• Designing and debugging a reactive concurrent server that uses a single thread of control to

process more than one request at the same time is rather difficult, especially if the services are
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complex. Such a server may never block, so it cannot use blocking or stream I/O, which are more
user-friendly than non-blocking I/O. Concurrent events must be demultiplexed and dispatched to
non-blocking event handlers, the context of requests to subservient servers must be saved, etc.

• Using multiple threads allows several requests to be processed in parallel, while each thread will
process a request at a time, being programmed in a sequential style. A thread can block waiting
for I/O, network communication or services from other servers, and can easily store the context of
the current request.

• If the parallel threads need to use shared resources such as data objects, additional complexity is
introduced in the form of critical section problems (and require mechanisms such as mutex and
read/write locks.)

Solution
Increase the concurrency level of a software server by multi-threading. There are several approaches to
build a multi-threaded server which can be applied in different situations (as discussed in the next
three patterns). Some solutions provide better performance in certain conditions, by paying a higher
price in term of system resources. These solutions have been discussed in detail in [Smith+96].
Multi-threading is efficient only if the given software server uses more than one subservient server,
and thus the concurrent requests can be processed in parallel.
The efficiency benefits brought by each additional thread tend to diminish when the number of threads
increases. This effect is due to the fact that more threads lead to a higher competition for the
subservient servers, and thus to longer queueing delays and nested service times.

Examples
A first example (see Fig.5) shows how
the software bottleneck from Fig.4 is
alleviated when the mid-level server has
15 threads instead of one. (The thread
pool approach discussed in one of the
following patterns has been applied in
this example).  The system throughput is
more than double, system saturation is
reached for a higher number of clients,
and the utilization of the two subservient
servers has also doubled (the two
utilization curves are still overlapped).
The system bottleneck was alleviated but
not completely removed, since the mid-
level server still saturates first.
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A second example given in Fig.6 shows that a gradual increase in the number of threads in the mid-
level server  brings diminished returns in terms of efficiency. Practitioners should use this knowledge
when choosing the number of threads, such that a better efficiency is obtained  without consuming too
many system resources.

Related Patterns
The next three patterns, Thread Per Request, Thread Per Session and Thread Pool, specialize the
current pattern, by describing three different solutions to multi-threading a server, each applicable in
specific circumstances. Thread Per Request should be used when the requests are long and complex.
Thread Per Session is appropriate for cases when clients make frequent requests for short services.
Thread Pool is especially useful when a bound must be put on the consumption of system resources
by the threads.

THREAD PER REQUEST

Problem
We want to apply the Server Multi-threading pattern in order to increase the capacity of a software
server.

Context
The server must handle complex requests coming from multiple clients with variable frequencies.
Each request takes a relatively long time to process.

Forces
• We would like to apply a simple programming solution, and avoid a lot of thread management.

Although each thread will take care of a single request (resembling a sequential program) the
access to common data shared by all threads requires synchronization primitives, which are an
added complexity, can cause contention, overheads and can overwhelm the performance benefits
of the concurrent execution (as shown in [McKenney96]).

• Increasing the number of threads leads to undue consumption of system resources (memory, file
descriptors, etc.) and to execution overheads (thread creation and management, critical sections to
protect shared data, etc.)

• Allocate resources (threads, memory, I/O ports, etc.) only when necessary, and release them as
soon as possible.

• Session related data must be available to all requests related to that session.

Solution
The server spawns off a thread for each request when it arrives, and destroys the thread when the
request is completed. The programming effort to spawn off  the threads is quite limited, and the
system resources are only held for the period the request is being served. However, storing session
related data over several requests requires special measures (i.e., server data objects that out-live the
threads).

Resulting Context
The creational overhead for a thread is incurred for every request, which makes the technique useful
only for relatively long services. Thread Per Session and Thread Pool try to overcome this drawback
in different ways.  (Note that in new Unix systems, which are optimized for lightweight thread
creation and where performance is expressed in process-forks-per-ms, this may not be nearly as much
of an issue!). Also, the resource consumption may be too high for a large number of requests.
If subsequent requests need any session-related data, we need to ensure that this data is accessible
regardless of the thread used to process a particular request. Thread Per Session solves this problem.



 THREAD PER SESSION

Problem
We want to apply the Server Multi-threading pattern in order to increase the capacity of a software
server.

Context
The clients carry on long-duration sessions with the server, sending multiple requests per session.

Forces
• We would like to maintain program simplicity and low thread management.
• Amortize the overhead of thread creation/destruction over the length of a session.
• Session related data must be available to all requests related to that session.
• A large number of threads leads to undue consumption of system resources.

Solution
The server spawns off a thread for each session started by a client, which is exclusively associated
with it for the entire period of the session. This amortizes the cost of spawning a thread across
multiple requests. Also, the problem of  session-related data is easily solved: such data is local to the
thread used exclusively by every session.
This approach is the most expensive in terms of resource consumption (especially for large numbers
of on-going sessions), but given sufficient resources can achieve the highest throughput. Resources
can be held without being used if some sessions submit infrequent requests.

Resulting Context
Spawning a thread for each requests will lead to excessive resource consumption when a high number
of sessions are opened simultaneously. We know from the Server-Multithreading pattern that it is not
worthwhile to increase the number of threads beyond a certain limit: the efficiency gains become
smaller and smaller, whereas the resource consumption grows proportionally with the number of
threads. This is a “no win” situation which must be avoided if possible. The problem is addressed by
the Thread Pool pattern.

THREAD  POOL

Problem
We want to apply the Server Multi-threading pattern in order to increase the capacity of a software
server.

Context
There are too many simultaneous requests and/or sessions, and we must put a bound on system
resources consumption for multi-threading.

Forces
• Enforcing bounds on resource consumption complicates the thread management.
• Amortize the overhead of thread creation/destruction over a longer period of time.
• Request may arrive when the server is unable to start the execution of new requests due to lack of

resources. Measures should be taken to store the requests for a later time.
• Session related data must be available to all requests related to that session.

Solution
The server pre-spawns a pool of threads, whose number may be fixed, or changed dynamically at a
low rate. The resource consumption for threads is bounded. The  requests arriving when all the threads



are busy must be queued for later processing, which is an added complexity and overhead. This
approach requires the most programming effort, due to thread pool management.

Resulting Context
Thread pool  is really a cost-reduced version of the previous two approaches, Thread Per Request and
Thread Per Session, addressing some of the consequences described in their respective Resulting
Contexts (namely, bounding the consumption of system resources and amortizing the high cost of
thread creation). However, a new overhead is introduced in this approach due to the allocation of a
worker thread to every request. More exactly, the following activities are done serially in the main
thread for all the incoming requests: event demultiplexing, receiving the messages from the clients,
queueing the messages internally and dispatching the worker threads. The next pattern addresses the
problem of minimizing the serial thread management.

MINIMIZED  SERIAL THREAD MANAGEMENT

Context
The thread pool  approach is one of the most attractive solution to multi-threading for systems with
many clients. However, the thread pool management operations use shared data objects and are done
serially in the main thread. Most of these activities are short, except for the receiving of messages
when the messages are large.

Problem
Can the thread pool management be further improved by moving some of the serial thread
management work to the parallel worker  threads?

Forces
• Parallelizing the workload enhances the potential for performance gains, especially when longer,

autonomous  activities can be moved to parallel threads.
• Any work done serially on behalf of each and every request limits those gains.
• Shared data objects (as those used for the thread pool) must be used in a critical section, to protect

their consistency.
• We gain nothing in term of efficiency by moving to parallel threads activities which must be

performed in a critical section.

Solution
Move the actual message reception
for large message sizes from the main
thread to the worker threads.

Example
Figure 7 shows the effect on the
system throughput of moving the
reception of client messages from the
main thread to the worker threads in a
software server using a thread pool
with  10 threads. It is easy to see that
this parallelization has a positive
effect that becomes more important
with the size of the messages.
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MULTIPROCESSOR PATTERN

Context
After multi-threading the servers and moving all the significant work to parallel threads, the potential
for concurrency in the server went up, and the workload was “pushed down” to the subservient
servers. It  is possible that the effect of such measures is  to move the  limiting capacity factor from
the  intermediate server to one of the subservient servers. This pattern applies if the new bottleneck is
the processor on which the server is running.

Problem
How can we  further improve the system  capacity ?

Forces
• The efficiency of a multi-threaded server benefits from having  more subservient servers (in this

case, more CPUs).
• Additional hardware may be  expensive.
• We would like to limit the programming effort (i.e., software costs) to change the application

code to make it suitable for a multiprocessor.
• Multi-processing primitives often change the application interface.
• Some operating systems offer the same application interface if running on a single-processor or

multiprocessor. (Such an example is Solaris 2.5).

Solution
Run the multi-threaded server on a multiprocessor instead of a single processor, on top of an operating
system that does not require application interface changes for going from a single processor to a
multiprocessor. Take advantage of executing the concurrent threads in parallel. The increase in
capacity will be considerable, but still not linear with  the number of processors (due to the serial
portion of the workload and to contention for common data).

Related patterns
Another alternative to increasing the processing power is the Faster Processor pattern from
[Meszaros96]. Another pattern from the same language,  Share the load, also adds new processors to
the system, but involves code changes since it selects the functions to be moved, clearly partitioned
from the ones to stay.
The Multiprocessor pattern presented here takes advantage of the fact that a multi-threaded server is
already parallelized, so it does not require any further changes to the application code.
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APPENDIX

In order to illustrate the effect of the proposed
patterns, we have implemented and measured a
layered server system with an architecture as in
Figure 8. The system was designed and
implemented by using the Adaptive
Communication Environment (ACE) toolkit
[Schmidt94]. Several version of software
servers with different threading models  were
implemented and measured [Somadder+97].

The measurements were performed for
different workload intensities by varying the
number of clients. Each point on the
performance graphs was obtained by taking the
average results of 10 similar experiments, each
experiment having a duration of  300 request
cycles of a tagged client. The repetition of the
measurements was necessary to account for
performance variations due to transient loads
on the communication network and hosts. 95% of the results were in a confidence  interval of
plus/minus 2% around the mean. Even with these precautions, some curves look noisy due to external
loads out of our control.
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