Tower Patterns for Web Hyperdocument Framework Design

R. V. Snytsar, V. B. Filatov
Interna Ltd.,
Moscow, Russia.
E-mail: [roy,vf]@rrg.msk.su

Abstract

Development of an advanced Web-based information system often demands introduction of
several new document types. To introduce a new document type, system designer needs to
develop a couple of applications responsible for different aspects of document manipulation,
namely, storage, authoring, retrieval and browsing, and therefore do a lot of programming. The
objective of this paper is to provide recipes for reduction of programming efforts in hypermedia
system design. This paper suggests that a modification of a Booch-like diagramming technique
that takes into account distribution of document functionality between several applications
enables us to develop patterns for hyperdocument design. We will refer to these patterns as
‘tower patterns’ to distinguish them from lower-level design patterns. We provide a collection
of tower patterns useful for object-oriented hypermedia management system design. Some
patterns cover scenarios for processing statically stored documents while some for dynamically
created ones.

1. Introduction

When designing new document type for Web presentation, one needs to make the following
decisions.

e Determine what document formats and what databases may be presented in the
publication.

e Decide what applications for document and database manipulation should be written or
reused.

e Choose what plugin applications for client side presentation of your documents should you
write.

e Connect to the Net and set up your Web server.
e Create CGI scripts that will access databases or convert documents into HTML.
e Publish your information.

Usually it is convenient for system designer to consider his efforts to be distributed over four
levels of WWW architecture [Dre87].

e The first level is a description of the document storage formats.
e The second level is formed by applications for document authoring and manipulation.
e Agents level it the third one. This level consists of Web server software and CGI scripts.

e The fourth level is a set of tools for visual object presentation on user machine or browser
level.

Web is a disintegrated environment for data publishing. One document may be represented by
different applications on different system levels and on different machines in the Net. On the
other hand, different document types may be processed by applications with similar behavior.
Thus, problem of software design reuse becomes crucial.

For easy implementation of this structure first of all one needs a set of classes responsible for
document storage, presentation and manipulation. But to obtain a framework suitable for
document type design one also have to specify modeling constructs that describe how
individual classes, instances and applications interact on different levels of hypermedia system.

!I Browsers

0

Agents /
CGl scripts

Authoring

Document
Structure

Figure 1.WWW architecture levels.

The usual technique for software components reuse is the introduction of abstract classes, while
frameworks are a technique for reuse of entire application and subsystems. The popular method
for description of application frameworks is pattern language[Joh92]. We wish to use patterns
at a larger scale of hypermedia system. These patterns should describe experience in reuse of
applications ensemble that process a document on different levels of Web architecture.

Several approaches to the development of pattern languages for hypermedia system design have
already been considered by different researchers.

Schwabe et al [SR94] presented an object-oriented method for designing hypermedia
applications. They pointed out four steps of hypermedia system design and developed patterns
to be used during all design steps.

Buhr [Buhr96] noticed that description of distributed system in terms of patterns requires
paradigm shift from the object-oriented design patterns in the “gang-of-four” style [GHJV93]
and proposed the use case maps as behavioral patterns for client-server system.

De Bra et al. [Bra92] proposed a data model that is intended to serve as the basis for analysis of
hyperdocument structure as well as viewing and processing tools (the tower model).

We suppose that the notion of the tower as an application ensemble that covers all aspects of
hyperdocument functionality is an excellent basis for higher-level analysis and provides a
suitable paradigm for the development of patterns collection for hypermedia system design.

The rest of the paper is organized as follows. Chapter 2 introduces a catalog of tower patterns.
The next chapter provides a sketch of a data model that may be useful for analysis of desired
Web application architecture. Then we conclude with a brief discussion of our patterns
collection.

2. Tower patterns collection

Now we should discuss the most useful tower patterns and their reusability issues. Each pattern
imposes using of a specific scenario of hyperdocument processing during its life cycle, namely,
storage, authoring, retrieval and browsing.

To describe the pattern we use Tower Pattern Template that is close to template format
proposed in [MD96]

Intent

What does the tower pattern do? What is its rationale and intent? What particular design issue
or problem does it address?

Problem

The specific problem to be solved.

Motivation

A scenario in which the pattern is applicable.

Forces

Considerations that must be taken into account when choosing a solution to the problem.

Solution

The proposed solution to the problem.

Participants

Describe the classes and/or objects participating in the tower pattern and their responsibilities.
Diagram

A graphical representation of the pattern using a notation based on Booch notation. We denote
an instance of a document-specific subclass by cloud, instance of reusable class by dark cloud,
usage relation by simple arrow and aggregation relation by arrow with diamond. Clouds are
hosted on different floors of a tower to emphasize their distribution on the different layers of
Web architecture. Every object is placed on the lowest floor it is used on. Reference from one
tower floor to another means reuse of the class already implemented on lower level of system
design. Each floor designates an application that is created using some existing class
architecture.

Consequences

What are trade-offs and results of using a pattern? What benefits do you get when follow the
pattern?

Implementation issues

How do existent frameworks fit this pattern? How can the introduced classes be quickly
implemented on the basis of the existent framework? Since the presented patterns were
discovered while we were attempting to reuse MFC-based Document and View classes, we
consider Microsoft Foundation Classes (MFC) architecture as the underlying level for our
design.

2.1 Pattern: HTML Specialty

Intent

HTML Specialty document type encapsulates HTML document structure and provides
alternative view for the document for performing higher-level operations on it.

Problem

You want a specific HTML document type.

Motivation

HTML Specialty pattern defines framework for additional view of an HTML document.

Well-known example of the document of HTML Specialty type is a Netscape Bookmark file.
Although it is usual HTML file that contains unordered list tags, Netscape provides special
tree-view window for easy manipulation and organization of the bookmarks.

Let us consider more typical situation that stimulates introduction of this pattern. Suppose you
supervise development of a database where documents are bibliography references presented in
the HTML format. You wish that these documents follow some template (for example, name of
periodical should be in bold font). So you can either review and reformat all documents created
by different people or create specialized HTML editor to be used for your documents creation
instead of the common editor. This editor presents a document as a form with editable fields.
When writing document to the disk, the editor uses proper formatting tags and style sheet.

Another example is a helper application that drives author to use the HTML pattern language
[Ore95] by propagating pattern approach to document structure description.

Forces

e It will be easier to provide homogeneous formatting for similar documents using such a
specific document type.

e The information is already well structured.

Solution

Create a specific editor program to create and manipulate these documents. The output of the
program should be in HTML format.

Participants

e HTML document encapsulates document structure.

e application provides specific view class responsible for user interface and manipulation
with document object.

Diagram

Application
Application <> Window
<7
"

N

Figure 2. HTML Specialty pattern

Consequences

® You get consistent formatting of the structured information.
e Building a specific HTML editor may be very expensive.
e Once written HTML document class can be effectively reused.

Implementation issues

This pattern drives us to the first obvious but important design decision. First of all
hyperdocument development framework should be powered by reusable HTML document
class. Development of the powerful CDocument-derived class responsible for HTML parsing

and manipulation allows system designer spare minor efforts introducing alternative views for
HTML documents.

2.2 Pattern: MIME Type

Intent

MIME Type pattern describes a type of document that is transmitted to user machine as is and
requires special browser extension.

Problem

You want user to receive and manipulate your documents in original format.

Motivation

There exist many document formats that cannot be directly mapped into HTML. Sometimes it
is desirable to perform specific operations on document on a client machine.

For example, you developed an application to view and edit video clips in your special format.
Now you wish to publish your clips on the Web. Clips cannot be converted to HTML. So, a
common solution is a plugin application. It is desirable to reuse code from the editor
application in the plugin.

Forces

e Itis hard to convert your documents into HTML.

e User needs to manipulate your document in specific way.

® You have already written editor or viewer application for your documents.
Solution

Create a plugin application.

Participants

e document encapsulates document structure.
e application provides user interface and manipulates document object.
e plugin provides user interface and manipulates document object on client machine.

Diagram

Plugin
Window

Figure 3. MIME pattern

Consequences

® You get consistent presentation of your documents on the client side.
e Client needs to download and install your plugin application.
e Plugin application is platform-dependent.

Implementation issues

The most popular browser technology at present - Netscape Plugin framework[NNP96] -
proposes reuse of the Document-View pattern in both editor and plugin applications. However,
classes that implements this patterns in editor and plugin differ and may not be reused. So an
important design decision would be to coordinate editor and plugin protocols in such way that
they can use the same Document and View classes. It means that after implementing editor
classes we can get plugin application for free. This approach is implemented in ActiveX
extensions framework from MFC 4.2 [Rau96]. Thus, choosing Microsoft Internet Explorer
browsing technology allows higher level of code reuse and cheaper implementation.

2.3 Pattern: Database Shortcut

Intent

Database Shortcut embodies a virtual object, allowing hyperdocument author to inspect virtual
objects without involving Web server software.

Problem

You wish to refer to a single record in database in the same way as to a standalone document.

Motivation

Hyperdocuments dynamically created from the database query results (virtual objects) are hard
to manipulate. When author wishes to refer to a virtual object, he has to specify a reference to a
CGI script along with script parameters. It’s inconvenient to remember and type script
parameters manually.

We propose another scenario that allows to provide more automation in the authoring process.
First of all an author uses an application that allows him to query and browse database records.
When a user selects a record he wishes to refer to as a virtual object, he saves on disk a tiny file
(shortcut) containing query parameters that identify this record. Then user refers to the shortcut
instead of a CGI script. When the shortcut is requested from a client machine, a server filter
performs the query using shortcut data as query parameters and sends the resulting virtual
object back to client machine.

Forces

e [t is desirable to refer to either documents stored in database or standalone documents in
uniform way.

¢ You have already written an application that manages documents stored in database.

Solution

Enhance the database management application with ability to create shortcuts to single records
and create CGI script that will extract a record on the user request for shortcut.

Participants

e extractor creates virtual object.

e shortcut stores brief description of virtual object in a file.
e application provides user interface and manipulates virtual object.
e filter transmits virtual object on user request.

Diagram

Figure 4. Database Shortcut pattern.

Consequences

Database Shortcut pattern is used for implementation of a very interesting document type that
serves as a reference to database query result. Database shortcut allows information system
author to become acquainted with virtual object regardless the filter software. For example,
database author can review virtual object contents without access to Web server.

Implementation issues

The most important design issue is reuse of Extractor class in viewer. and in filter. It is often
convenient to derive CDbShortcut class from CDocument and CExtractor class from
CRecordset. Thus, it take minor efforts to implement this pattern on the basis of MFC
framework. Note that if we need client-side browsing facility, View class may be also reused.

2.4 Pattern: Searchable Index

Intent

Searchable Index pattern describes document that is not transmitted to user machine because of
its size but its pieces are available on user request.

Problem

You wish to give to user an ability to query for parts of a document instead of the whole large
document.

Motivation

Some documents, like indices, are too large to be transferred to client machine. However we
can enable user to specify what part of the document he is interested in. Depending on user
request, server will dynamically generate document containing relevant information.

Forces

e Accessing large documents can slow down user interaction with you Web site.

e Before querying for the parts of the document user should make sense of document’s
contents.

Solution

Create a CGI script that will provide a query form as a result of user request for the whole
document. The form page should contain the information that aids user to make a productive
queries.

Participants

e index stores data.
e index filter sends query form as index request result.
e query form passes query parameters back to server.

e query processor performs query with user-defined parameters and returns resulting
dynamically created document back to user.

Diagram
Query
Processor
Figure 5. Searchable Index pattern
Consequences

Using this pattern may dramatically speed up system reaction on user requests.

Implementation issues

Searchable index scenario can be easily implemented using ISAPI Server Extension classes
from MFC 4.1 [Bla96].

3. Tower model review

To perform the perfect design of data management system we should start with an appropriate
data model. Basing on this model, we can describe our design using patterns on a higher level
of abstraction than well-known object-oriented design patterns.

De Bra et al. [Bra92] proposed an object-oriented data model, namely, tower model, that
provides constructs and can serve as a foundation for hyperdocument types design. The data
model is made of two layers.

The lowest layer defines first-class objects within hyperdocument that are nodes, links and
anchors.

The highest layer defines constructs that build complex information structures from the simple
ones. These constructs are:

e The composite object construct describes hyperdocument structure in terms of nodes,
links and anchors.

e The tower construct packages different levels of hyperdocument description, such as
document structure level and visual presentation level.

e The city construct describes multiple perspectives of a single document.

So, let us illustrate the tower model by it’s application to the description of the HTML

document type.
Web eb
Browser Browser

Figure 6. HTML city and virtual object tower.

The lowest layer of data model is the semantics of nodes, links and anchors. This semantics is
pre-defined by choosing WWW as hypermedia engine [CG88].

e On document structure level a HTML document has two perspectives. The first one is an
ASCII file. The second one is a composite of tags as defined in HTML specification
[HTMLO6].

e On document manipulation level we can use ASCII text editor to produce HTML
documents.

e On agent level HTTP daemon transmits HTML file as it is.
e On user-machine level Web browser renders HTML to produce visual presentation.
Though HTML document has two different perspectives, it is modeled as a city.

This city can evolve in two directions. On the one hand, we can use a WYSIWYG HTML
editor and disregard the ASCII file tower. On the other hand, document templates and wizards
cause a diversity of document perspectives and further “urbanization” of the HTML document
model.

Another important notion in tower model is virtual object that is not stored but is generated by
the agent. For example, database query results, are not hosted as separate documents. They are
generated by CGI scripts. Their virtuality can be easily understood from the figure 6: virtual
object are not based on the ground of the file system.

4. Conclusion

We have presented a collection of design patterns that make it possible to create a variety of
document types for Web-based hypermedia system.

Some of the scenarios presented in this paper are well known to web programmers. The notion
of database shortcut that materializes virtual object is novel. It leads to similar representation
and user interface for both real and virtual documents.

The collection of tower patterns provides excellent basis for hyperdocument application
framework creation. Dark clouds on patterns are reusable classes and white clouds are abstract

classes in a framework. Concrete class implementations may use lower-level object-oriented
design patterns [Joh92].

We suppose that our collection of tower patterns may serve as a foundation for the research of
the pattern language describing experience in building Web-based information systems.

S. Acknowledgments

The authors would like to thank Vsevolod Ilyushchenko who provided feedback on early
versions of this paper. Special thanks to Peter Sommerlad who’s “shepherding” of this paper
helped authors to improve the patterns and present them in much more consistent way.

References

[Ber89] Berners-Lee T., Information Management: A Proposal. Available at
http://www.w3.org/pub/WW W/History/1989/proposal.html.

[Bla96] Blaszczak M., Writing Interactive Web Apps is a Piece of Cake with the New ISAPI Classes
in MFC 4.1, Microsoft Systems Journal, Vol. 11, No. 5.

[Bra92] De Bra, P., Houben, G.J., Kornatzky, Y., An Extensible Data Model for Hyperdocuments, 4"
ACM Conference on Hypertext, Milan, December 1992, pp. 222-231.

[Buhr96] Buhr R.J.A., Design pattern at Different Scales, Presented at EuroPlop’96, Kloster Irsee,
Germany, July 11-13, 1996.

[CG88] Campbell, B., Goodman, J.M., HAM: A general purpose Hypertext Abstract Machine,
CACM, 31:7, July 1988, pp. 856-861.

[Dre87] Drexler K.E., Hypertext Publishing and the Evolution of Knowledge, Social Intelligence,
Vol. 1, No. 2, pp.87-120.

[GHJV93] Gamma E., Helm R., Johnson R, Vlissides J., Design Patterns: Abstraction and Reuse of
Object-Oriented Design, European Conference on Object-Oriented Programming, Kaiserlauten,
Germany, July 1993. Published as Lecture notes in Computer Science #707, pp. 406-431,
Springer-Verlag.

[HTML96] Introducing HTML 3.2. Available at http://www.w3.org/pub/WWW/MarkUp/Wilbur/

[Joh92] Johnson R. E., Documenting Frameworks with Patterns, OOPSLA °92 Proceedings,
SIGPLAN Notices, 27(10): 63-76, Vancouver BC, October 1992.

[JRO1] Johnson R. E., Russo V. F., Reusing Object-Oriented Design, Univ. of Illinois tech report
UIUCDCS 91-1696.

[MD96] Meszaros G., Doble J., MetaPatterns: A Pattern Language for Pattern Writing, Presented at
EuroPlop’96, Kloster Irsee, Germany, July 11-13, 1996.

[NNP96] Netscape Navigator Live Connect/Plug-in Software Development Kit. Available at
http://home.netscape.com/comprod/development partners/plugin_api/index.html

[Ore95] Orenstein O., Html Pattern Language. Available at http://www.anamorph.com/docs/
patterns/newdescrip.html

[Rau96] Rauch S., Unified Browsing With ActiveX Extensions Brings the Internet to Your Desktop,
Microsoft Systems Journal, Vol. 11, No. 9.

[SR94] Schwabe D., Rossi G., From Domain Models to Hypermedia Applications: an Object-
Oriented Approach.

