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Abstract
As Java developers, we talk a lot about methods of classes and interfaces. We talk about types of methods like
getters and setters, command methods, and factory methods. Next to classifying methods by purpose, we also talk
about properties of methods like being a primitive or composed method, a hook or template method, a class or
instance method, or a convenience method.

Obviously, we have a large vocabulary for talking about method types and method properties. We use this
vocabulary to communicate and document different aspects of a method, for example, what it is good for, who may
use it, and how it is implemented. Understanding this vocabulary is a key to fast and effective communication
among developers.

This article presents seven key method properties that we use in our daily design and programming work. It
illustrates them using a running example and catalogs them for use as part of a shared vocabulary. Some of the
method properties have their own naming convention. Mastering this vocabulary helps us better implement our
methods, better document our classes and interfaces, and communicate more effectively.

1  Method types and method properties
We first need to distinguish between method types and method properties. A method type captures the primary
purpose of a method, for example, whether the method changes a field of an object or carries out some helper task.
The name of a method type serves as a succinct label on a method that indicates what type of service the method
provides to a client.

A method property, in contrast, describes some additional property of a method that adds to its specification.
Examples of method properties are whether the method is primitive or composed, whether it is available for
overriding through subclasses, or whether it is a mere wrapper around a more complicated method. While a method
is (most of the time) of exactly one method type, it can have several method properties.

Method types and properties are orthogonal and can be composed (almost) arbitrarily.

1.1  Method types
In [1], we discuss nine key method types. These method types are grouped into three main categories:

•  Query methods. A query method (a.k.a. accessing method) is a method that returns some information about the
object being queried. It does not change the object’s state.

•  Mutation methods. A mutation method is a method that changes the object’s state (mutates it). Typically, it does
not return a value to the client.
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•  Helper methods. A helper method (a.k.a. utility method) is a method that performs some support task. A helper
method does not change the object’s state, but only performs operations on the method arguments.

Each of these categories comprises a set of method types, provided in Table 1. Most methods are of one specific
type, even though it is sometimes helpful to mix types.

Query method Mutation method Helper method

get method (getter) set method (setter) factory method

boolean query method command method assertion method

comparison method initialization method

conversion method

Table 1: Common method types.

The exact definition of these method types can be found at www.riehle.org/java-report. Suffice it to say that they
help in communicating effectively and efficiently about methods of classes and interfaces. Several companies,
including some I have worked for, use these method types as part of their programming guidelines.

Method types can be documented using Javadoc tags. For example, a get method like “String component(int i)” that
returns a String at some index i of an object is tagged as “@methodtype get”. Or, an assertion method like “void
assertIsValidIndex(int i) throws InvalidIndexException” that throws an exception if an invalid index is passed in is
tagged as “@methodtype assertion”.

By consistently tagging methods this way, we document a method using a single keyword that communicates the
method’s purpose succinctly to its readers. Documentation is only one part of the game, though: using method type
names helps in more effectively communicating in design and programming sessions as well.

1.2  Method properties
Browsing Table 1, you may wonder where that well-known pattern “template method” of the Design Patterns book
[4] went. After all, Table 1 lists factory method, which is the other method-level pattern of [4]. Here the distinction
between method types and method properties comes into play. Factory method is the name of a method type, while
template method is the name of a method property.

Documenting methods using only method types leaves out crucial information about the implementation of a
method and its role within the class. Method types are outward-looking, which is why they are of most value in
interface specifications. Method properties, in contrast, are inward-looking, which is why they are of highest value
in the implementation of a class or interface.

In this article, we distinguish four general method properties plus further Java-specific method properties. The
general properties are class implementation, inheritance interface, class/instance level distinction and convenience.

•  Class implementation. The class implementation property defines how the method is implemented. Its values
primitive, composed, or regular describe how methods in a class interact and depend on each other.

•  Inheritance interface. The inheritance interface property defines the role of the method in the inheritance
interface of a class. Its values hook, template, or regular describe how subclasses are to use them.

•  Class/instance level distinction. The class/instance distinction level property of a method defines whether the
method is a class-level or an instance-level method. Its values are instance, class-instance, and class.

•  Convenience. The convenience property defines whether the method implements its service itself or is a
wrapper around a (typically) more complicated method. The property may be set or not.
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Next to these general method properties, Java provides further property dimensions as keywords on the language
level. These properties include accessibility (public, protected, etc. plus associated access rules), evolution (final,
deprecated), and others. The Java-specific dimensions are not discussed in this article, because they can be found in
any Java programming book and are well-known to most Java developers.

The following sections describe the general method properties and show how they can be used to improve the
communication among developers and the documentation of source code.

2  Class implementation
As the first type of method property, we discuss is the structure of a method’s implementation. Viewed from this
perspective, a method may be a primitive, composed, or regular method:

•  A primitive method is a method that carries out one specific task, usually by directly referring to the fields of the
object. It does not rely on any (non-primitive) methods of the class that defines the primitive method.

•  A composed method is a method that organizes a task into several subtasks that it glues together as a linear
succession of method calls. Each subtask is represented by another method, primitive or non-primitive.

•  A regular method is a method that is not a primitive or composed method. (We list this property value for sake
of completeness, but do not discuss it further).

These property values are not the only possible values. There may be more that may just have slipped our attention.
However, this does not mean they are not there!

2.1  Primitive methods
Recall the Name object example from [1]. A Name object represents a name that consists of several succeeding
name components. Name objects are used to give names to objects when storing and later retrieving them. Name
objects are part of a naming scheme that lets us manage named objects efficiently. Examples of naming schemes are
internet domain names, file names in a file system, and Java class names.

We represent each name component in a Name object as a String object. The concatenation of the name components
makes up the name. Examples of names are “$HOME/bin” with the name components “$HOME” and “bin” and
“java.lang.Object” with the name components “java”, “lang”, and “Object”.

Given a Name object, we want to get and set individual name components. Hence, we want methods like “String
component(int i)” for getting the name component at index i and “void component(int i, String cs)” for setting the
String object cs as the name component at position i. In addition to doing the basic work, both methods have to
check whether the index i is actually a valid index. Also, we want to send out events to notify clients about potential
or actual changes to the object.

One possible implementation of Name objects is to store the name components in a Vector. Hence, we design and
implement a class VectorName that does exactly this. The set method “void component(int i, String cs)” of class
VectorName looks as displayed in Listing 1.

/**
* Set a name component to a new value.
* @methodtype set
*/
public void component(int index, String cs) throws InvalidIndexException {

assertIsValidIndex(index); // check whether index is valid
fComponents.setElementAt(cs, index); // set new value
notifyListeners(new ComponentChangeEvent(...)); // inform listeners

}

Listing 1: The set method “void component(int, String)”of VectorName in a preliminary version.
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Now assume that a name object also provides a command method “void components(int i, String[] csa)” that
replaces a whole subrange of name components, starting at index i, with the name components in the “String[] csa”
array. If you implement “components” as a for loop that calls “component” for each name component in “csa”, you
get as many ComponentChangeEvents as there are elements in “csa”. Typically, however, you want only one event,
to be signaled once the overall task is done.

This is why you split up the functionality of “component” into two methods: one method that does all the
embellishing work like checking the index and sending out events, and one method that carries out the basic task of
setting the new value for a specific name component. This latter method is called a primitive method.

•  A primitive method is a method that carries out one specific task, usually by directly referring to the fields of the
object. It does not rely on any (non-primitive) methods of the class that defines the primitive method.

Listing 2 shows this primitive method, using the customary “basic” prefix in the method’s name.
/**
* Set a name component to a new value.
* @methodtype set
* @methodproperties primitive
*/
protected void basicComponent(int index, String component) {

fComponents.setElementAt(component, index);
}

Listing 2: The primitive method “void basicComponent(int, String)” of VectorName.

You can now implement “void component(int, String)” and “void components(int, String[])” using “void
basicComponent(int, String)”. This makes efficient use of the resources: you avoid any redundant and unwanted
boundary checks or events. Also, you can now use the primitive methods to implement other methods more cleanly.

Primitive methods are typically “fragile” methods. They expect calling methods to maintain all pre- and
postconditions and class invariants. For example, “basicComponent” expects that the index position passed in is
valid. It does not check its validity to avoid repeated redundant checking. As a consequence, primitive methods are
frequently protected or even private methods, because they are used only from inside the class.

In any non-trivial class implementation, you do not only have one primitive method, but several. Actually, you
design the implementation of a class around a core set of primitive methods, each one devoted to handling one
specific aspect of the object, typically a single field. For example, the set of primitive methods for handling name
components of Name objects comprises four methods, displayed in Listing 3.

protected String basicComponent(int index) { ... };
protected void basicComponent(int index, String component) { ... };
protected void basicInsert(int index, String component) { ... };
protected void basicRemove(int index) { ... };

Listing 3: Primitive methods of VectorName.

The whole scheme of using primitive methods as a basis for implementing classes is called design by primitives. It
serves to break up a class implementation into smaller, more manageable pieces. Also, it is a key constituent of
designing reusable classes, as we see in the next section on hook and template methods.

2.2  Composed methods
Listing 4 displays the final “void component(int, String)” method, using the “basicComponent” primitive method.
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/**
* Set a name component to a new value.
* @methodtype set
*/
public void component(int index, String component) throws InvalidIndexException {

assertIsValidIndex(index); // check whether index is valid
basicComponent(index, component); // set new value
notifyListeners(new ComponentChangeEvent(...)); // inform listeners

}

Listing 4: The method “void component(int, String)” in its final version.

As you can see, the method’s body consists of three successive invocations of further methods. After an initial call
to “assertIsValidIndex”, the method calls “basicComponent”, followed by “notifyListeners”. The “void
component(int, String)” method is called a composed method.

•  A composed method is a method that organizes a task into several subtasks that it glues together as a linear
succession of method calls. Each subtask is represented by another method, primitive or non-primitive.

A composed method implements a method as a linear succession of calls to other simpler methods to achieve the
method’s purpose. I think it is important to emphasize “linear succession” which rules out loops and other concepts.

The reason for this constraint is to better distinguish primitive methods from composed methods and from regular
methods. Kent Beck defines the original meaning of composed method in [3]. I read his definition to mean “any
kind of method that is not a primitive method.” With this definition, there is no distinction between composed
method and regular method and we should get rid of the name “composed method”.

For this reason, I prefer to define composed method more narrowly, as described above.

3  Inheritance interface
Let us now discuss method properties that describe the role of a method in class inheritance. The key to reusing a
class through inheritance is to properly define an inheritance interface that subclasses use for their implementation.
Here, the following three property values are possible:

•  A hook method is a method that declares a well-defined task and makes it available for overriding through
subclasses.

•  A template method is a method that defines an algorithmic skeleton for a task by breaking it up into subtasks.
Some of the subtasks are deferred to subclasses by means of hook methods.

•  A regular method is a method that is not a hook or template method. (Again, we list this property value for sake
of completeness, but do not discuss it further).

In [6] and [7], you can find an in-depth discussion of how to use these concepts in the design and implementation of
classes and interfaces.

3.1  Hook methods
VectorName is just one way of implementing Name objects. Next to representing the sequence of name components
as a Vector, we can also represent the sequence of name components as a single String object in which the different
components are separated by an appropriate delimiter char. We call this class StringName. A StringName object
represents the name “java.lang.Object” as the String “java#lang#Object” using ‘#’ as the delimiter char.1

                                                     
1 For storing characters like the delimiter char as regular chars, we mask them using an escape char like ‘\’. So

the general string “#5” would be represented as the “\#5” StringName object.
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Using StringName objects, we can represent a name with less memory than with a VectorName. However, a
StringName needs more time to retrieve a specific name component, because it first has to look up the substring that
represents the name component and then has to create a new String from it. Thus, not one single implementation is
best, and we need both VectorName and StringName objects, depending on how we use the Name objects.

Furthermore, we introduce a Name interface to capture the interface common to both Vector- and StringName
objects. Also, we introduce an AbstractName class that captures the implementation common to both Vector- and
StringName objects. Figure 1 shows the resulting class design.

VectorNameStringName

<<interface>>
Name

AbstractName

Figure 1: The Name example design.

Compare the composed method “void component(int, String)” from Listing 4 with the primitive method “void
basicComponent(int, String)” from Listing 3. The composed method is all about how to accomplish a task by gluing
subtasks together. It does not say anything about how the more primitive tasks are carried out, and most importantly,
which fields of the object they refer to. The primitive method, in contrast, focuses solely on implementing a
primitive task in terms of the object’s fields.

AbstractName implements the composed method “component” but not the primitive method “basicComponent”,
because the composed method applies to all subclasses while the primitive method does not. VectorName
implements the primitive method, because it makes direct use of its fields. However, it is now impossible for the
composed method to call the primitive method, because AbstractName does not know about it. To remedy this
situation, we declare an abstract method “void basicComponent(int, String)” in AbstractName. The composed
method can now use this method without requiring an actual implementation by AbstractName. Listing 5 shows this
declaration.

/**
* Set a name component to a new value.
* @methodtype set
* @methodproperties primitive, hook
*/
protected abstract void basicComponent(int index, String component);

Listing 5: The abstract method “void basicComponent(int, String)” of the AbstractName class.

The abstract method “void basicComponent(int, String)” is a hook method.

•  A hook method is a method that declares a well-defined task and makes it available for overriding through
subclasses.

A hook method is typically an abstract method. Still, it may also provide a default implementation of the method in
a few cases to make life easier for subclass implementors.

Now that AbstractName requires the implementation of “basicComponent” by all its subclasses, we need to define
the StringName implementation of “basicComponent” (next to the VectorName implementation of Listing 2).
Listing 6 shows an implementation.
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class StringName extends AbstractName {
/**
* Hold the name in a single string.
*/
public String fName;
...

/**
* Set a name component to a new value.
* @methodtype set
* @methodproperties primitive
*/
protected void basicComponent(int index, String component) {

component= maskString(component); // mask control chars
int startPos= startPosOfComponent(index);
String head= fName.substring(0, startPos);
int endPos= endPosOfComponent(index);
String tail= fName.substring(endPos, fName.length());
fName= head + component + tail; // compose new name

}
...

}

Listing 6: The method “void basicComponent(int, String)” of class StringName.

Most non-trivial classes have several hook methods. The overall set of hook methods represents the inheritance
interface of a class. Frequently, the hook methods coincide with the primitive methods, so that the set of primitive
methods equals the set of hook methods and hence the inheritance interface of a class. However, this is not true in all
cases. Listing 7 shows the inheritance interface of AbstractName.

protected abstract String basicComponent(int index);
protected abstract void basicComponent(int index, String component);
protected abstract void basicInsert(int index, String component);
protected abstract void basicRemove(int index);
protected abstract Name newName(String name);

Listing 7: Inheritance interface of AbstractName composed of hook methods.

Listing 7 adds to Listing 3 the factory method “Name newName(String)” for creating an instance of the same class
as the class of the current object (an AbstractName object does not and should not know whether it is actually a
StringName or VectorName object).

The application of the design by primitives scheme mentioned above to maximize code reuse in inheritance
hierarchies is called the narrow inheritance interface principle. Basically, it states that you should base your abstract
class implementations on a minimal set of primitive hook methods. These hook methods are then used by composed
or template methods.

3.2  Template methods
With all primitive and hook methods in place, we can now take a look at how they are used. A first example that
uses primitive methods and hook methods is the composed method “void component(int, String)” of Listing 4.

Another example is the “Name contextName()” method defined in the Name interface and implemented by the
AbstractName class. The “contextName” method is a get method that returns a new Name object. The Name object
represents a name that contains all name components of the old Name object, except for the last name component.
So, “contextName” called on “java.lang.Object” returns a “java.lang” Name object. This method is useful for
separating the context of a name from its last name component (for example, to separate the package name from a
class name or the directory name from a file name).

Listing 7 shows the implementation of “contextName” as defined by AbstractName.
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/**
* Return context name of Name object.
* @methodtype get
*/
public Name contextName() throws InvalidIndexException {

int nc= noComponents()-1;
[1] assertIsValidIndex(nc);

if (nc == 0) {
[2] return newName("");

}

StringBuffer sb= new StringBuffer();
for (int i= 0; i < nc; i++) {

[3] sb.append(basicComponent(i));
[4] sb.append(delimiterChar());

}
sb.setLength(sb.length()-1);

[5] return newName(sb.toString());
}

Listing 8: The “Name contextName()” method of AbstractName.

Effectively, Listing 8 shows several calls to primitive methods (references 1, 2, 3, 4, and 5), of which some are also
hook methods (references 2, 3, and 5). These calls are embedded into further algorithmic work that glues the results
of the individual subtasks together.

The “Name contextName()” method is a template method [4].

•  A template method is a method that defines an algorithmic skeleton for a task by breaking it into subtasks. The
implementation of some subtasks is deferred to subclasses by means of hook methods.

Let us compare regular methods with composed methods and template methods. What are the differences? First of
all, a regular method is neither a primitive nor a composed method and neither a hook nor a template method.
Rather, it makes use of further methods at will. There are no constraints on how it uses these methods.

In contrast to regular methods, composed methods and template methods are constrained in the way they use other
methods. From a composed method, we expect a linear succession of calls to other methods, with only minimal glue
in between. There are no constraints on these other methods. Also, no complex algorithm is assumed.

From a template method, we do not only expect an algorithmic skeleton, but also the use of hook methods for
subtasks. By delegating work to hook methods, a template method expects a subclass to specialize the behavior of
the algorithm to the subclass’ implementation without changing the algorithmic structure. Basically, the subclass
fleshes out the skeleton defined by its superclass.

When designing the inheritance interface of an abstract superclass, it is not clear whether hook or template methods
come first. Without hook methods, you cannot define template methods. Without template methods, you do not
know what the variant parts of your behavior are. So you need both, and defining hook and template methods goes
hand in hand.

4  Class/instance level distinction
Another important distinction is between class methods and instance methods.

•  An instance method is a method that applies to an instance of a class.

•  A class-instance method is a method that applies to a class object.

•  A class method is a method that applies to a class.

In Java, instance methods and class-instance methods are trivial, but class methods are not.
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4.1  Instance and class-instance methods
All methods of a class that are not static methods are instance methods. An instance method always has an implicit
“this” argument that refers to the object the method is executed on. Static methods are excluded from the set of
instance methods, because they do not refer to a specific object. Both “basicComponent” and “component” are
examples of instance methods.

Class-instance methods are a specialized form of instance methods. Class-instance methods are instance methods of
class objects. In Java, the set of class-instance methods is defined by the methods of java.lang.Class. In fully
reflective systems, you can subclass Class and provide new implementations of it. Unfortunately, Java is not such a
system. This is, why we need a workaround in the form of (static) class methods.

4.2  Class methods
Assume that our Name objects were immutable objects. An immutable object is an object that has no mutation
methods so that its state can not be changed. We would replace command methods like “insert” and “remove” with
methods that do not change the Name object but rather return a new object that represents the result of the “insert”
or remove method. Immutable objects are free of the dangers of side-effects, because they cannot be changed. A
consequence of this property is that you can safely share immutable objects and reduce memory consumption by
avoiding redundant objects.2 To achieve this, you must gain control of object creation.

You do this by offering your own object creation methods. So you design and implement a static StringName
method “public static StringName newInstance(String name)”, as displayed in Listing 9. This method is used by
clients to receive a new StringName object. The method first tries to reuse existing StringName objects that it has
stored in a hashtable. If no matching StringName is found, it creates a new one that it returns to the client.

public class StringName extends AbstractName {
/**
* sStringNames stores all StringNames retrieved using newInstance
*/
protected static Hashtable sStringNames= new Hashtable();
...

/**
* Returns a pre-existing StringName, if one exists.
* Creates a new StringName and stores it, if none exists.
* @methodtype factory
* @methodproperties class
*/
public static StringName newInstance(String name) {

StringName sn= (StringName) sStringNames.get(name);
if(sn == null) {

sn= new StringName(name);
sStringNames.put(name, sn);

}
return sn;

}
...

}

Listing 9: The “StringName newInstance(name)” class method of StringName.

The “newInstance” method is a class method, and the “sStringNames” field is a class field.

•  A class method is a method that applies to a class.

•  A class field is a field of a class (rather than a field of an instance of it.)

A class method is a method that provides class-level functionality. A class method typically refers to class fields
much like an instance method refers to fields of an instance of the class.
                                                     
2 If you are curious what you can gain from this technique, take a look at www.jvalue.org.
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In Java, there is no direct way of expressing class methods. However, we can emulate them using static methods.
Emulating class methods through static methods is not perfect; actually, it is pretty cumbersome, because you do not
have inheritance and polymorphism. However, it works for many common tasks.

This “newInstance” method is just one instance of the common “use static methods to represent class methods”
idiom. Other examples are the “String valueOf(...)” methods of the JDK String class and the “BigInteger
valueOf(...)” methods of the JDK BigInteger class.

Not all static methods are class methods. Examples of static methods that are not class methods are the “maskString”
and “demaskString” methods that mask or demask a String from control characters (not shown in any listing).

What do we gain by making class methods explicit? Well, we cleanly separate concerns. An instance method should
not access or manipulate class fields unless this decision is easy to undo during system evolution. Rather, any class
field should be encapsulated behind appropriate class methods. This separation of concerns makes our code easier to
understand and easier to change as requirements evolve.

5  Convenience methods
Finally, let us review convenience methods [5].

•  A convenience method is a method that simplifies the use of another, more complicated method by providing a
simpler signature and by using default arguments where the client supplies no arguments.

Effectively, a convenience method is a wrapper around a more complicated method, here called the wrapped
method. Hence, the convenience method is implemented using the wrapped method. However, it makes using the
wrapped method easier by requiring fewer arguments from the client and by supplying default arguments for the
missing arguments.

Consider Listings 10-12. They show the convenience methods “String asString()” and “String asString(char)” and
the more complicated wrapped method “String asString(char, char)”.

/**
* Returns string representation of name.
* @methodtype conversion
* @methodproperties convenience
*/
public String asString() {

return asString(' ');
}

Listing 10: The “String asString()” convenience conversion method.

/**
* @methodtype conversion
* @methodproperties convenience
*/
public String asString(char delimiter) {

return asString(delimiter, ESCAPE_CHAR);
}

Listing 11: The “String asString(char)” convenience conversion method.

/**
* @methodtype conversion
* @methodproperties primitive
*/
public String asString(char delimiter, char escape) {

if (isEmpty()) {
return "";

}
StringBuffer sb= new StringBuffer();
String delimiterString= String.valueOf(delimiter);
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for (int i= 0; i<noComponents(); i++) {
sb.append(basicComponent(i));
sb.append(delimiterString);

}
sb.setLength(sb.length()-1);
return sb.toString();

}

Listing 12: The “String asString(char, char)” primitive conversion method.

As we can see, all “asString” methods do the same thing, which is to provide a string representation of a Name
object. However, some “asString” methods require fewer arguments than others and hence are more convenient to
use. Only one method, the “String asString(char, char)” method, does the actual work. All other methods are
implemented by delegating to another method.

The method signature of a convenience method typically defines fewer arguments than the signature of the wrapped
method. When calling the wrapped method (which may be just another slightly more complicated convenience
method), the convenience method uses default values or derived values as the missing arguments.

In the example of Listing 10-12, “String asString()” uses the space character as the default delimiter argument, and
“String asString(char)” uses the default escape char as the escape char. Finally, “String asString(char, char)” uses no
default arguments but does the actual work. A client is free to use any of these methods, depending on which
arguments it wants to supply.

A variation of this idiom are convenience constructors. Java supports them through the “this(...)” construct [2].

•  A convenience constructor is a constructor that simplifies the use of another, more complicated constructor by
providing a simpler signature and by using default arguments where the client supplies no arguments.

Listings 13 shows a convenience constructor of StringName, and Listing 14 shows the wrapped constructor used by
the convenience constructor.

/**
* @methodtype constructor
* @methodproperties convenience
*/
public StringName(String name) {

this(name, DELIMITER_CHAR, ESCAPE_CHAR);
}

Listing 13: The “StringName(String)” convenience constructor.

/**
* @methodtype constructor
* @methodproperties composed
*/
public StringName(String name, char delimiter, char escape) {

super();
initialize(name, delimiter, escape);

}

Listing 14: The “StringName(String, char, char)” constructor.

Typically, convenience methods have the same name as the method they are wrapping. (Convenience constructors
obviously must have the same name.) However, this need not be true in all cases.

Also, you can frequently find a cascading implementation of convenience methods. In the first example, “asString”
is implemented based on “asString(char)” which in turn is implemented based on “asString(char, char)”. Most
developers I know consider cascading convenience methods good style, because changing a default argument can be
carried out in exactly one place.



12

6  What have we gained?
We can now tag methods with their types and properties. Methods like “void basicComponent(int, String)” and
“Name contextName()” can now be documented as shown in Listing 15.

/**
* Set a name component to a new value.
* @methodtype set
* @methodproperties primitive hook
*/
protected abstract void basicComponent(int index, String component);

/**
* Return context name of Name object.
* @methodtype get
* @methodproperties template
*/
public Name contextName() throws InvalidIndexException { ... }

Listing 15: Two example methods documented using @methodtype and @methodproperties tags.

When you talk about methods, you chain the name of the type and the names of the properties. For example, you
call the “basicComponent” method a “primitive hook set method”, if you want to give a full specification. Type
binds stronger to “method” than any of the properties. Among the properties, class/instance binds stronger than
hook/template than primitive/composed than convenience. You can also call the “basicComponent” method a
“primitive method” or a “hook method” or a “set method” and leave out the other properties, depending on what
method aspect you are talking about.

Talking about methods and documenting them this way is easy, lightweight, and precise. Once you agree on a
common catalog of method types and properties as presented in [1] and in this article, you can explain what a
method does much faster and more successfully than possible with any lengthy explanation.

7  Summary
This article provides us with a vocabulary to more effectively talk about methods in Java interfaces and classes. It
provides the most common method properties, distinguishes them from method types, and gives them a precise
definition. If you feel that it leaves out some key method properties, I’d be happy to hear from you. If you know
further aliases for the names of the method properties provided here, let me also know. At www.riehle.org/java-
report you can find a growing catalog of these and other method properties as well as the source code of the
examples.
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10  Catalog of method properties

10.1  Class implementation

10.1.1  Primitive method
Definition: A primitive method is a method that carries out one specific task, usually by directly

referring to the fields of the object. It does not rely on any (non-primitive) methods of
the class that defines the primitive method.

JDK example: -

Name example: void AbstractName::assertIsValidIndex(int), String StringName::basicComponent(int).

Prefixes: basic, do.

Comment: Design by Primitive is a key principle of good class design that uses primitive methods.

10.1.2  Composed method
Definition: A composed method is a method that organizes a task into several subtasks that it glues

together as a linear succession of method calls. Each subtask is represented by another
method, primitive or non-primitive.

JDK example: -

Name example: String AbstractName::component(int), void AbstractName::component(int, String).

Prefixes: -

Comment: Name taken from [3].

10.2  Inheritance interface

10.2.1  Hook method
Definition: A hook method is a method that declares a well-defined task and makes it available for
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overriding through subclasses.

JDK example: -

Name example: void AbstractName::basicComponent(int, String).

Prefixes: -

Comment: -

10.2.2  Template method
Definition: A template method is a method that defines an algorithmic skeleton for a task by

breaking it into subtasks. Some of the subtasks are deferred to subclasses by means of
hook methods.

JDK example: -

Name example: Name Name::contextName().

Prefixes: -

Comment: Name taken from [4]

10.3  Class/instance level distinction

10.3.1  Instance method
Definition: An instance method is a method that applies to an instance of a class.

JDK example: Every non-static query or mutation method of a class or interface.

Name example: Every non-static query or mutation method of a class or interface.

Prefixes: -

Comment: In reflective systems, an instance method may also be a class method (but need not).

10.3.2  Class method
Definition: A class method is a method that applies to a class.

JDK example: static String String::valueOf(...), static BigInteger BigInteger::valueOf(long).

Name example: static StringName StringName::newInstance(String name).

Prefixes: -

Comment: In reflective systems, a class method is always an instance method of a class object.

10.4  Miscellaneous

10.4.1  Convenience method
Definition: A convenience method is a method that simplifies the use of another, more complicated

method by providing a simpler signature and by using default arguments where the
client supplies no arguments.

JDK example: String BigInteger::toString() (wraps String BigInteger::toString(int radix)).
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Name example: String Name::asString(), String Name::asString(char). (But not: asString(char, char).)

Prefixes: -

Comment: Name taken from [5].

10.4.2  Convenience constructor
Definition: A convenience constructor is a constructor that simplifies the use of another, more

complicated constructor by providing a simpler signature and by using default
arguments where the client supplies no arguments.

JDK example: BigInteger::BigInteger(String) (wraps BigInteger::BigInteger(String value, int radix)).

Name example: StringName StringName::StringName(String name).

Prefixes: -

Comment: -


