
Copyright 1995 Dirk Riehle. All Rights Reserved.
In: Pattern Languages of Programm Design 2. Chapter 6.
Edited by John M. Vlissides, James O. Coplien and Norman L. Kerth.
Reading, Massachusetts: Addison-Wesley, 1996.

Good object-oriented design firmly relies on abstract classes. They define the in-

terface to work with subclasses that implement them. If clients directly name

these subclasses, they become dependent on them. This complicates both system

configuration and evolution. The patterns of Late Creation and Class Retrieval

presented in this paper overcome these problems by encapsulating class trees be-

hind their root classes. Clients use class specifications to retrieve classes and cre-

ate objects. Classes can be removed and plugged into the class tree more easily.

Thus, encapsulating class trees eases system evolution and configuration of sys-

tem variants.

The patterns of this paper are presented using a new variation of the pattern

form. We start by outlining the overall background on which the patterns

emerge. This background explains what the patterns are relevant for and what

they achieve. It is the overall pattern context and the recursive closure of all sub-

sequent pattern contexts.

After introducing the background, we present each pattern in a subsection of its

own. A subsection mainly consists of a pattern/context pair that separates the ac-

tual pattern from the embedding context. This is based on our understanding of a

Patterns for
Encapsulating Class Trees

by
Dirk Riehle
Union Bank of Switzerland

Introduction

pattern as a form emerging in specific contexts. The form is finite and can be de-

scribed precisely, while the context is infinite and can only be partially described

(that is, we extract what we think is relevant to understand the forces driving the

pattern).

Section 2 introduces the background of the presented patterns. Section 3 and 4

present the patterns needed for encapsulating class trees. Section 5 compares the

patterns with other patterns, most notably Factory Method and Abstract Factory.

Section 6 goes back to discuss the pattern form and what we have gained from

using it. Section 7 summarizes the paper and presents some further conclusions.

Object-oriented design firmly relies on abstract classes. They represent the key

design decisions that structure a system in the large. An abstract class represents

the interface to a whole class tree. This interface is often sufficient for clients to

work with objects of the class tree. Only for selecting classes of the class tree

and creating objects of them, concrete subclasses of the abstract class have to be

named. If this is done by clients of the abstract class, they become dependent on

the class tree’s internal structure. Changes of class names and class tree structure

force clients to be changed.

Therefore, the class tree behind an abstract class should be hidden from all clients

of that class. If a client’s knowledge is restricted to the abstract class only, all

dependencies on subclasses are cut. This has several advantages. First, clients can

focus on the relevant abstraction, that is the abstract class. They don’t have to

bother with less important details like names of subclasses. Second, changes of

the class tree have only local consequences which makes system evolution eas-

ier. Third, plugging in and removing subclasses doesn’t affect clients. Thus, sys-

tem variants can be configured in an easy way.

The general idea for encapsulating class trees is to let clients refer to the abstract

superclasses only. They retrieve classes and create objects by supplying class

specifications. A specification describes the classes of interest to the client and

makes up for the information loss of class names. A common meta facility

maps these specifications onto classes. This task is conveniently carried out by

the abstract superclasses of a class tree themselves. These superclasses visible to

clients are called interface classes of the class tree. While working with encapsu-

lated class trees, two different but related patterns emerged: Class Retrieval and

Late Creation.

Background of the
Patterns

Class Retrieval is the process of retrieving a set of classes from an encapsulated

class tree which all adhere to a given specification. This set can be used for fur-

ther decisions on how to proceed. For example, retrieving all classes in an en-

capsulated Command class tree [GHJV95] can be used for building a menu item

list of possible commands.

Late Creation is the process of creating a single instance of a class which

matches a given specification. Thereby, instances of hidden subclasses can be

created using interface classes only. The most common example is object activa-

tion. A class id received from a stream is mapped to a class which is used to cre-

ate the new object. Late Creation lets clients not only perform object activation

based on class id’s but create new objects based on all kinds of specifications.

Such specification might depend on existing objects and can therefore be used to

create a set of objects in concert, for example from a behavioral pattern.

Several ways of specifying classes can be thought of, most prominently interface

definition languages and object request brokers. Here, however, additional forces

are introduced: Class Retrieval and Late Creation have to be carried out fast and

in the order of time used by Factory Methods [GHJV95]. Achieving this, they

can be incorporated into basic framework design and may be used as pervasively

as factory methods.

The patterns Class Specification, Class Semantics and Class Clause support

Class Retrieval and Late Creation and achieve the desired order of speed. Class

Specification is used to express requirements for classes to be retrieved or new

objects to be created. Class Semantics is used to express properties of a specific

class so that it can easily be matched with a specification. A Class Clause ex-

presses an atomic property of a class as a first class object. Figure 1 shows an

overview of the patterns and their dependencies.

The patterns have been implemented in two different frameworks, one in

Smalltalk [RS95] and one in C++ [RZ95]. The example designs from these

frameworks used to discuss the patterns are based on a simple metalevel architec-

ture which assumes some kind of representation of classes as objects so that

classes can be passed around. This is available in most major C++ application

frameworks [WG94, GOP90, CIRM93] as well as in CLOS [Ste90] and

Smalltalk [GR83].

Framework Example

As an example, consider a system designed according to the Tools and Materials

Metaphor [RZ95]. Users use tools to work on materials. Tools are means of

work while materials are the intermediate or final outcome of work. A software

desktop presents both tools and materials as icons to users. They start tools by

clicking on the corresponding icon.

We will deal with two tools from a time planning system: a calendar tool that

works with an appointment book and a planner tool that works with a time

table. The appointment book as well as the time table are materials. The calendar

is used to keep track of single appointments while the planner is used to manage

weekly dates like meetings and seminars.

Figure 2 and 3 show a simple software design. The classes Calendar and

Planner are subclasses of the abstract superclass Tool. The classes

AppBook and TimeTable are subclasses of the abstract superclass

Material. In a running system, a single instance of class Desktop creates,

manages and deletes all tools and materials. We simplify the example by assum-

ing that all classes are available in a single executable. To focus on the essen-

tials, we ignore issues of dynamically linked libraries and interprocess communi-

cation.

What does it mean to encapsulate class trees for this example? Systems designed

according to the Tools and Materials Metaphor usually consist of a large and

changing number of tools and materials which are supplied with a specific sys-

tem variant. Therefore, the class Desktop should not know about specific tools

but should use the abstract superclass Tool only. Thus, the class trees behind

Patterns for Encapsulating Class Trees

Class Retrieval Late Creation

Class Specification Class Semantics

Class Clause

Figure 1: Overview of the patterns.
An arrow expresses that the source
pattern relies on the target pattern of
the arrow. Therefore, it provides a
possible context of its use.

Tool as well as Material should be encapsulated for Desktop. Doing so,

several tasks have to be reconsidered:

• Each tool in the system should be represented as an icon on the desktop.

How can the desktop ensure that the represented tool is actually available in

the current system variant?

• Assume that the user selected a tool icon or typed in a tool name. How can

the desktop determine the corresponding tool class and create an actual tool

instance?

• Assume that the user double clicked on a material to start it up. Usually a

large number of tools can work on a material in more or less specific ways

(see pattern Tool and Material Coupling in [RZ95]). How can the desktop

find out the best fitting tool class to work on the material?

These questions will be successfully answered in the example sections of the pat-

terns of the next two sections.

Clients of an encapsulated class tree may not directly refer to the internal classes

of the tree. At runtime, however, they have to determine the available classes so

that they can rely on them. Furthermore, they have to create objects from these

hidden classes to actually make use of them. Class Retrieval shows, how clients

Planner

Calendar

Tool

Desktop

DesktopDesktopMaterial

AppBook

TimeTable

Figure 2: Software design of the ex-
ample. Rectangles represent classes,
arrows use and lines inheritance rela-
tionships.

Class Tree Encapsulation

retrieve sets of classes that all adhere to a given specification. Late Creation

shows, how clients create objects from hidden classes also using specifications.

Class Retrieval

Clients of an encapsulated class tree need to retrieve classes from that tree. They

delegate the task to the interface class of the tree and provide it with a class spec-

ification. They receive a set of classes all adhering to the specification which

they use according to their purposes.

Context

Several tasks require knowledge about the available classes in a class tree. For

example, clients need to know the available classes in a Command [GHJV95]

class tree so that they can build a list of menu items for them. Or clients want to

know all classes in a Strategy [GHJV95] class tree that perform with certain tim-

ing characteristics.

Clients of an encapsulated class tree may not know these classes by name. They

only know the interface class of the class tree. However, they know the proper-

ties of those classes which they need for their task. Therefore:

Pattern

Clients of an encapsulated class tree create a specification for those classes they

are interested in. The specification is based on the properties that are relevant to

the client. The client requests all classes from the class tree that adhere to the

specification. This task is most conveniently delegated to the interface class of

the class tree. The client receives a set of all classes in the class tree that match

the specification.

All classes in the set are subclasses of the interface class and therefore guaranteed

to support its interface. The client can use this set according to its purposes, for

example to present each class as a possible choice in a graphical user interface.

Specifications for Class Retrieval are usually ambiguous specifications which

denote a whole range of possible classes.

Example

The desktop class has been written to work generically with tools. It doesn’t

know about specific tool classes. The tool classes vary with each system variant.

Thus, during each system startup, the desktop has to determine which tool

classes are available. Icons should only be created for tool classes that are actu-

ally available.

Therefore, the desktop creates a specification for concrete tool classes. The speci-

fication consists of a single flag which indicates that the classes have to be in-

stantiable. It calls the RetrieveClasses operation of class Tool. A set of

classes that fit the specification is returned (see the following code example).

Among others, it contains the classes Planner and Calendar. The desktop

now can safely create icons for these tool classes.

void Desktop::GetConcreteToolClasses(Set< Class* >* cset)
{

// create simple specification for concrete classes
IsAbstractClause spec(false);

// request classes from interface class
Tool::ClassObject()->RetrieveClasses(&spec, cset);

}

Design

At least two possible implementations come to mind. The interface class can

build the set by traversing the class tree top down. While traversing, it matches

each class with the specification. If the specification fits, the corresponding class

is put into the set which will be returned to the client. This is a slow implemen-

tation but it introduces no additional memory overhead. The patterns of chapter 3

discuss how object-oriented specifications can be built easily.

Object

Tool Material Desktop

Calendar AppBook

Planner TimeTable

Figure 3: The class (object) tree of
the example. Each class holds a list of
its subclasses. Objects are shown as
rounded rectangles.

If speed is more important, the specification can be used to compute the index

for a table lookup. Each specification usually denotes a set of classes, which

means that the index for the table lookup identifies the set of equivalent classes

for a certain specification. These tables can be built in advance or on demand.

The execution time is now constant but requires some memory overhead for the

tables. Our implementations use class tree traversal for Class Retrieval and table

lookup for Late Creation (next pattern). It doesn’t compute tables for all kinds of

specifications (which would be impossible), but only for specifications built

from a single clause (see pattern Class Clause).

Impact

The code for retrieving classes can fully be written on the framework level. It

usually consists of two lines, one creating a specification, one calling the re-

trieve classes operation. Retrieving classes requires additional functionality

which depends on the chosen implementation strategy. This is solved by the

framework and shouldn’t bother users. The only task left to users of the frame-

work is to specify the semantics of the classes which they introduce. This effort

is in the order of writing an access operation for each property specified (see the

patterns of the next section).

Late Creation

Clients of an encapsulated class tree need to create objects of classes hidden in

that tree. Again, clients create a specification for the objects to be created and

delegate the task to the interface class. They either receive an instance of the

class matching the specification or null.

Context

An encapsulated class tree is of no use unless objects of its internal classes can

be created. Again, clients know only the interface class. In addition, they now

have to know a property that unambiguously identifies the class they are inter-

ested in. For example, a class id received from an input stream has to be mapped

to a class to activate an object. Therefore:

Pattern

The client of a class creates a specification that unambiguously identifies a sin-

gle class. It then requests a new instance of a class that fits the specification.

Again, this task is conveniently delegated to the interface class. A returned object

is guaranteed to both adhere to the interface class and the specification. If no

matching class is found, no instance can be created and null is returned.

The most widely known example of Late Creation is object activation. Class

names or class identifiers received from a stream are mapped to a class which

then is used to create an object. Late Creation is the generalization of several

special purpose solutions existing today [Gro93, GOP90]. Using table lookup it

can be carried out in constant time.

The name “Late Creation” resembles the notion of late binding. As with late

binding the class which eventually is referred to is determined at runtime.

Example

Tools should have unambiguous names like “Calendar” or “Planner.” Assume

that the system can be started using aliases. The chosen alias indicates the first

tool to be launched automatically. Thus, the desktop creates a specification for a

tool class by using the alias string. Any unambiguous specification (class id,

class name, tool name) suffices.

The desktop calls the CreateLate operation of the abstract class Tool.

Tool uses the specification to retrieve the corresponding subclass. Tool asks

this class to create an instance of it which is returned to the client. If no match-

ing class is found, null is returned.

Design

Again, it is possible to both traverse the class tree or to use table lookup to find

a class. In this case, given an unambiguous specification, a table entry denotes a

single class. Thus, the table can be built more easily. Developers should take

care that during evolution the system stays free of ambiguities. We solve the is-

sues by carefully designing and inventing new classes, however, tool support is

certainly desirable.

If clients are allowed to pass in ambiguous specifications, the class of the new

instance can’t be decided without further help. Thus, some means of handling

ambiguities has to be introduced. Clients might supply additional hints like

“choose the most specialized” or “most general implementation.” Or they will

just receive an instance of the first class that is retrieved.

Impact

Class Retrieval and Late Creation have similar impacts. Again, the execution

speed depends on the chosen implementation strategy and can be done in constant

time in the order of a factory method.

For certain classes, hiding the creation process from the client might turn out to

be a problem. Inside the class tree, objects can only be created using a standard

initialization procedure. If the new object needs additional parameters, it must re-

ceive them from the client through an extra operation after creation. However,

the protocol of this extra initialization operation has to be available in the inter-

face class of the class tree and no assumption about class tree internal protocols

should be made.

In very problematic cases, the specification can be enriched with the initializa-

tion parameters, so that a special creation procedure or constructor can receive

them during the early object building process.

This section discusses class specifications and class semantics. Specifications for

a class as well as class semantics are built from clauses. A clause is an atomic

predicate about a class property. The semantics of a class are represented by a set

of clauses. A class specification is an expression from propositional calculus

with clauses as its atomic constituents. Class specifications can be matched

against class semantics in a straightforward fashion.

Class Clause

A class clause makes an atomic statement about a class property. It resolves to

either true or false. It is represented by an object and can be compared to other

clauses easily. Thus, it provides a basis for class specifications and first class

representations of class semantics.

Context

Class Retrieval and Late Creation use specifications to describe classes of inter-

est. Clients of an encapsulated class tree build specifications for one or more

classes. Thus they need some basic means to express class properties.

Furthermore, designers of a class wish to make its properties explicit as well.

Thus, they also need a basic means to express class properties. Finally, we have

narrowed the context to the programmatic statement that specifications should be

easy and need no further language or tool support. Therefore:

Specification Support

Pattern

Class properties are expressed as instances of clause classes. Each clause class

picks on a specific aspect of a class’s semantics and represents it as an object.

Clients use clause class instances to build specifications. A single clause is a

special case of a general class specification and can be used as such very well.

Furthermore, classes use clauses to express their basic properties.

Several kinds of clause classes exist. Some express general properties, for exam-

ple whether a class is abstract or concrete. Others express performance or mem-

ory consumption properties of instances of a class. Some clauses denote a class

unambiguously, for example clauses built from class id’s, class names or other

identifiers. Clause classes are introduced as needed.

The class tree of figure 4 shows some of the most convenient clause classes. All

clause classes are subclasses of Clause. Those classes that offer an unambigu-

ous id are subclasses of IdClause that in turn is a subclass of Clause.

Further clause classes are IsAbstractClause (a flag indicating abstract or

concrete classes), NameClause (a string indicating a class) and several kinds of

id clauses.

Next to static properties of a class, clauses can express dependencies between

several classes. A MaterialIdClause instance holds the id of a material

class. It can be used as a simple specification for tool classes that can work with

the indicated material. Such clauses are called dependency clauses.

When created, a clause instance receives its parameters from its creator. If the

client is using the clause for a specification (see next pattern, Class Speci-

fication), the client has to explicitly provide the class properties expressed

through the clause. If the clause is instantiated to be part of a class’s semantics,

it might derive the properties from the class itself (see next but one pattern,

Class Semantics).

Example

The specification for concrete tool and material classes is based on the clause

class IsAbstractClause. It consists of a flag that indicates whether a class

is abstract or not. The specification for object activation consists of a single

ClassIdClause instance that holds the id for the class to be instantiated.

As another example, assume that the user activated a material instance of class

AppBook. Now a tool to work on the given material has to be instantiated. The

desktop creates a MaterialIdClause instance which it provides with the

class id retrieved from the appointment book. It calls CreateLate of class

Tool. The MaterialIdClause instance is matched by the tool class

Calendar as the most specialized class being able to work on the indicated

material. From the desktop’s point of view it has created a tool instance depend-

ing on a given material. Only the abstract superclasses Tool and Material

were used. Thus, the class trees are encapsulated.

As yet another example consider a client that holds a List instance and wants

to create an iterator for it. It calls the CreateLate operation of class

Iterator and passes in a ContainerIdClause. This clause instance

holds the class id of the container class, that is the list class id. Each iterator

class knows the container it has been designed for and can therefore decide

whether it matches the specification. Using clauses this way avoids the usual

factory methods of the container to create iterators and cursors of all flavors.

Design

It has been left to prove that the execution time for class lookup can be in the

order of time consumed by factory methods. Given a specification consisting of a

single clause and a prebuilt table for looking up classes based on this clause

Clause

IsAbstract
Clause

IdClause

Name
Clause

Classname
Clause Toolname

Clause

ClassId
Clause

MaterialId
Clause

Figure 4: Hierarchy of clause
classes. Most clause classes are sub-
classes of IdClause and thus are ca-
pable of denoting a single class.

class, the following steps have to be taken: Create a clause instance, lookup the

right table based on the clause class, lookup the class based on the clause, return

it or call new on it. The following code example shows a simple C++ operation

for CreateLate.

Object* Class::CreateLateByClause(IdClause* clause)
{

// get clause instance table for the clause's class
Table* cltab = ClauseTab->Lookup(clause->ClassObject());

// lookup class for given clause
Class* classObject = cltab->Lookup(clause->Id());

// return new object of retrieved class
if (classObject != null) return classObject->New();
else return null;

}

Class Specification

A class specification is a formula from propositional calculus with clauses as its

basic constituents. Clients build a specification by creating clauses and arranging

them as a formula.

Context

Clients use specifications to retrieve classes from a class tree. They use clauses

to express basic properties of these classes. However, single properties are often

not sufficient to give a precise specification for a class. Therefore:

Pattern

A class specification is a formula from propositional calculus. Its atomic predi-

cates are clauses that express simple class properties. A formula lets clients

combine these clauses in a way sufficient for all tasks we encountered so far. The

formula is built from clauses using the standard operators of propositional calcu-

lus (and, or, not).

An important case of a class specification is a dependency specification built

from dependency clauses: Consider an abstract design consisting of more than a

single class. These classes are often subclassed in concert to take advantage of

each other. Therefore only specific subclasses work together. Only specific itera-

tors match specific containers. A new object that is to participate in the design

has to match the already existing objects. A specification for this object is a de-

pendency specification that consists of a conjunction of id clauses, one for each

existing object. Each class can check whether it can work with the classes indi-

cated in the clauses. If so, it will match the specification.

Example

Full specifications are often a combination of clauses. For example, the desktop

might wish to retrieve all concrete tool classes that work with a certain material

class. The resulting specification is a conjunction of an IsAbstractClause

(indicating that the class has to be concrete) and a MaterialIdClause in-

stance (indicating the material the tool has to work with). Asking class Tool

for all concrete subclasses that can deal with a TimeTable material will result

in quite a large set of tool classes. The set will include some general lister and

browser tools as well as the more specialized planner tool.

Design

A specification is an instance of ClassSpec which arranges the clause in-

stances it receives as a formula from propositional calculus. Very often, how-

ever, a class specification consists of only a single clause. Therefore, interface

classes should provide both RetrieveClasses and CreateLate opera-

tions for ClassSpec and Clause instances respectively.

Impact

The execution time required to evaluate a complex formula is still fast compared

to interpretative approaches, however, it can’t be compared with factory methods

anymore. If this turns out to be problematic, a new clause class can be created

that expresses the formula as a single clause. The logic has to be realized by

program code and thus is as efficient as possible.

Class Semantics

For each class a set of clause instances is provided. Each clause makes a state-

ment about the class it has been instantiated for. The set of clauses is said to rep-

resent a class’s semantics. A class can be matched against a specification, which

is realized by comparing clauses and evaluating the formula.

Context

Class specifications are built from clauses. Classes have to be matched against

such specifications as described in Late Creation and Class Retrieval. The match-

ing process should be simple and fast. Therefore:

Pattern

For each class in the system a set of clause instances is provided. Each clause in-

stance makes a specific statement about a property of the class it is maintained

for. Thus each clause instance stands for a property of the class it has been de-

signed and instantiated for. It is sensible (though not necessary) to have a class

maintain the set of clause instances describing its properties.

At least two rules based on the substitutability principle and deterministic se-

mantics [Lis88, LW93] apply:

• If a class holds an instance of a specific clause class, than each subclass

must also hold an instance of that clause class.

• If a clause instance makes a definitive statement about a class property, than

this property cannot be changed in subclasses.

Clause classes should be designed with the substitutability principle in mind.

A specification is matched against a class by successive matching of clauses and

evaluating the formula. If a clause from a specification isn’t found in the class’s

set of clauses, the clause evaluates to false. However, asking a class tree about

clauses it doesn’t know usually indicates a design flaw.

Example

The system’s root class, Object, holds instances of IsAbstractClause,

ClassIdClause and ClassnameClause. Each subclass also holds in-

stances of these classes. Class Tool holds an additional ToolnameClause

and a MaterialIdClause instance.

Design

Some managing facility has to be introduced which sets up the structure de-

scribed above. In the C++ framework we use the class Metaclass as a manag-

ing facility of its instances, which are the class (objects), and in the Smalltalk

framework we use an additional ClassManager. In C++ it was easy to intro-

duce some kind of metaclass (though not full-blown, of course), in Smalltalk we

didn’t want to interfere with the standard metalevel architecture.

This managing facility associates a set of clause classes with each class and cre-

ates instances of them. Each clause class is associated with a root class it can

make a statement about. Its instances are spread by the managing facility to the

whole class tree of the root class.

Impact

A concrete design has to clarify where clause instances get their data for describ-

ing class properties from. They may be retrieved from external databases or hold

in some meta information provided by the class. The simplest approach (and the

one we have used so far) is to make the class itself provide the data that clause

instances rely on. This forces clients to write simple access methods for each

class that return the data needed by the clauses. Each tool class, for example, has

a GetMaterialClass operation that returns the material class the tool has

originally been written for. This simple approach requires some discipline but

has worked well for us, mainly because not every new class requires a full set of

access methods but can rely on those it inherited. They provide its “default se-

mantics.”

At first glance one might imagine that with hundreds or possibly thousands of

classes memory problems lie straight ahead. However, only a very small number

of clause instances are hold by each class (only IsAbstractClause,

ClassIdClause and ClassnameClause). MaterialIdClause in-

stances, for example, are maintained only for tool classes, which is just a frac-

tion of the overall number of classes in our systems.

Moreover, clause instances usually aren’t fat but consist of 1 up to 4 or 8 bytes.

Memory consumption is fixed and can be calculated. We haven’t run into trouble

with our desktop applications. In case of trouble, optimization strategies can eas-

ily be thought of, for example by using Flyweights [GHJV95] to minimize the

number of clauses.

The patterns presented here are an alternative to two of the most important pat-

terns known today: Factory Method and Abstract Factory [GHJV95].

A factory method is an operation which creates an object that fits the current

class. It is destined to be redefined in subclasses where it creates an object that

fits the subclass best. Using Late Creation and Class Retrieval, the factory

method still exists, however, it needn’t be redefined. The creation process is car-

ried out on the abstract level using a specification for the new object. No redefi-

nition of the operation is needed which possibly avoids introducing a new sub-

class. Again the desktop might serve as an example. In most designs, it might

have been subclassed to introduce the available tool and material classes by

name. This isn’t necessary as has been shown.

Relation to Other Patterns

An abstract factory encapsulates the creation process of instances of a family of

classes. Some initial specification is used to choose among variants for different

systems. The standard example is a window system abstract factory. Based on the

runtime environment an abstract factory for either Motif, Macintosh, OS/2 or

any other window system is chosen. The factory offers operations to create new

windows, scrollbars, text fields, menus and so on. This can easily be reinter-

preted in terms of Late Creation. A client that whishes to create a new window

uses a window system clause. It consists of a flag that indicates the current win-

dow system. The client directly asks the abstract class Window to create an in-

stance late. It will receive an instance of a subclass which implements the win-

dow for the system indicated in the clause.

In [GHJV95] further creational patterns are listed (Prototype and Builder). They

cannot be directly replaced by Late Creation and Class Retrieval. However, they

have some similarities. Prototype has similarities with classes as objects and its

usage resembles Class Retrieval. Builder does things that can be done using Late

Creation as well.

I believe that Late Creation, like Factory Method, is a fundamental creational

pattern which can be used to implement the other patterns and works stand-alone

as well.

In this paper we have used a new presentation form based on our experience with

patterns.

Each pattern is understood as form within a specific non-arbitrary context

[Rie95]. This form constitutes the actual pattern and is finite. Therefore we can

identify and describe all relevant parts of the pattern. The pattern’s context, how-

ever, is not finite. We can approach it only pragmatically by describing what we

perceive to be the relevant forces giving shape to the actual pattern, that is the

form that emerges within that context. Since the understanding of a pattern’s

context is crucial to understanding the pattern, and since pattern and context have

to fit each other, we always describe them together. The result is a pattern/con-

text pair which is supplied for pragmatic reasons with additional sections on ex-

amples and design or implementation issues.

Contexts overlap and individual patterns often serve as a part within a whole that

is more than just the sum of the single patterns. Therefore we start describing a

set of patterns by introducing the background of the patterns. We describe the

Pattern Form

overall rationale (class tree encapsulation in the case of this paper) and thus pro-

vide an embedding and a higher-level understanding of the patterns to follow.

This background serves as the closure of the otherwise resulting infinite recur-

sion of embedding pattern/context pairs.

As discussions at PLoP showed, the entry point to a set of related patterns is

still considered to be problematic. A “first pattern approach” doesn’t seem to

work well since it sets the focus of the following patterns too narrowly on the

support of the initial pattern. The notion of background as presented above

might be a better alternative.

We have experimented with different pattern forms and think that the presenta-

tion form of a pattern depends on its intended use. The problem/context/solution

form, for example, seems to be aimed at developing solutions for problems in

design. It doesn’t seem to work well when perceiving and identifying patterns in

existing structures is more important, for example in legacy systems. A pat-

tern/context pair is more general, since it doesn’t induce specific ways of using

the pattern.

We have presented patterns that let developers encapsulate class trees. A possible

design can be based on a simple metalevel architecture which lets developers en-

capsulate class trees without too much overhead.

Coplien’s generic exemplar idiom [Cop92] is a variant of Late Creation. Lortz

and Shin report on concepts for Class Hiding as well [LS94]. Berczuk presents

similar patterns [Ber96]. ET++ [WG94] uses a special purpose variant of Late

Creation to perform object activation. Several relationships of the patterns to in-

terface definition languages and object request brokers exist. Thus, variants of the

patterns presented here have been developed independently around the world. This

gives the presented concepts real pattern status.

The patterns work stand-alone, however, tool support for system variant configu-

ration should be provided. Such a tool generates the makefiles that are used to

build a specific system variant. The tool should provide support for specifying

dependencies between classes, so that no class participating in a design is forgot-

ten. This ensures the absence of runtime failures due to missing classes.

The pattern form has been reduced to a pattern/context pair thereby imposing less

structure on the pattern description. However, this is still a time of experimenta-

Summary and Conclusions

tion and future revisions of our understanding of the pattern form might lead to

different and enhanced results.

I wish to thank Steve Berczuk, Walter Bischofberger, Brad Edelman and Kai-Uwe

Mätzel for reviewing and/or discussing the paper with me. I’d also like to thank

the reading group at UBILAB which discussed the paper in a writer’s workshop

setting. Finally the writer’s workshop at PLoP ’95 pointed out unclear issues

and helped me to improve the paper further.

Ber96

Steve Berczuk. “Organizational Multiplexing: Patterns for Processing Satellite

Telemetry with Distributed Teams.” This Volume.

CIRM93

Roy H. Campbell, Nayeem Islam, David Raila and Peter Madany. “Designing

and Implementing Choices: An Object-Oriented System in C++.”

Communications of the ACM 36, 9 (September 1993): 117- 126.

Cop92

James O. Coplien. Advanced C++: Programming Styles and Idioms. Reading,

Massachusetts: Addison-Wesley, 1992.

GHJV95

Erich Gamma, Richard Helm, Ralph E. Johnson and John Vlissides. Design

Patterns: Elements of Reusable Design. Reading, Massachusetts: Addison-

Wesley, 1995.

GOP90

Keith E. Gorlen, Sanford M. Orlow and Perry S. Plexiko. Data Abstraction and

Object-Oriented Programming in C++. John Wiley & Sons Ltd., 1990.

GR83

Adele Goldberg and David Robson. Smalltalk-80: The Language and Its

Implementation. Reading, Massachusetts: Addison-Wesley, 1983.

Gro93

Mark Grossman. “Object I/O and Runtime Type Information via Automatic

Code Generation in C++.” Journal of Object-Oriented Programming 6, 4

(July/August 1993): 34-42.

Acknowledgments

Bibliography

Lis88

Barbara Liskov. “Data Abstraction and Hierarchy.” OOPSLA ’87 Addendum,

ACM SIGPLAN Notices 23, 5 (Mai 1988): 17-34.

LS94

Victor B. Lortz and Kang G. Shin. “Combining Contracts and Exemplar-Based

Programming for Class Hiding and Customization.” OOPSLA ’94, ACM

SIGPLAN Notices 29, 10 (October 1994): 453-467.

LW93

Barbara Liskov and Jeanette Wing. “A New Definition of the Subtype Relation.”

ECOOP ’93, Conference Proceedings. Berlin, Heidelberg: Springer-Verlag,

1993. 118-141.

Rie95

Dirk Riehle. Patterns – Exemplified through the Tools and Materials Metaphor.

Masters Thesis, in German. UBILAB Technical Report 95.6.1. Zürich,

Switzerland: Union Bank of Switzerland, 1995.

RS95

Dirk Riehle and Martin Schnyder. Design and Implementation of a Smalltalk

Framework for the Tools and Materials Metaphor. UBILAB Technical Report

95.7.1. Zürich, Switzerland: Union Bank of Switzerland, 1995.

RZ95

Dirk Riehle and Heinz Züllighoven. “A Pattern Language for Tool Construction

and Integration Based on the Tools and Materials Metaphor.” Pattern Languages

of Program Design. Edited by James O. Coplien and Douglas C. Schmidt.

Reading, Massachusetts: Addison-Wesley, 1995. 9-42.

Ste90

Guy L. Steele. Common Lisp. The Language. 2nd Edition. Digital Press, 1990.

WG94

André Weinand and Erich Gamma. “ET++ a Portable, Homogenous Class

Library and Application Framework.” Computer Science Research at UBILAB.

Edited by Walter R. Bischofberger and Hans-Peter Frei. Konstanz, Germany:

Universitätsverlag Konstanz, 1994. 66-92.

