Abstract

Interactive software systems can now be found on many desktopsareheged by their users
to reach devel of productivity that woulchot have been possiblgithout them. Thelevelop-
ment of these systems, majeecificallythe development of interactive softwaaeplications,
is a difficult task. Software developers are confronteth two mainquestionspamelywhat
to build and how tobuild it. The question of what tbuild can be addressesdiccessfully by
leitmotifs andmetaphors. The Tools and Materials Metaphor design methodologwhich
has been developed for the domain of offiak. It works best for users who ameowledge-
able withrespect to their tasks and ceke over theesponsibilityfor it. Systemsdesigned
according to this methodology offefflexibility and degree of freedoseldom found inradi-
tional software systemsiow to build it, that is the softwarelesign and implementation of
such systems, is bestipported by aapplication framework. A framework represetite key
abstractions from a domain as reusable clagaethermore, it sets up the rigieiationships
between these classes, so that usengnot only reuse single classésit alsofull designs con-
sisting of dependent and collaborating classes. The development of such framewbigfslys a
demanding task requiring much experience and thoughtful design.

This reportpresents shortly thdesign metaphors frortme Tools and Materidletaphor. It
then focuses on thaesign of a Smalltalkramework thatmplementsthe most important as-
pectsfrom the metaphors. The framework is thoroughly based on exjperience in its con-
ventionalparts on how talesigntools, aspectsnaterials and their environment. In addition it
comprises some innovatiparts, moshotablythe Aspect Browser, a tool to adequately emu-
late multiple inheritance in Smalltalk. This repgdes down to th&evel of singlemethods of a
class andhus provides t@ur knowledge thdirst detailed technical documentation of such a
framework for the Tools and Materials Metaphor.

A concise summary of this report will appear as [RSS96].

Dirk Riehle and Martin Schnyder
Hamburg, Germany and Ztrich, Switzerland, July 1995
Copyright 1995 Dirk Riehle and UBS/UBILAB

Abstract

Table of Contents

1 Introduction and Overview
1.1 Introduction

1.2 Overview

1.3 Graphical notation

2 The Tools and Materials Metaphor
2.1 Context of the metaphors

2.2 The metaphors

2.3 Framework overview

3 Basic Framework Support

3.1 Overview of the basic framework cluster
3.2 Enhanced change/update protocol

3.3 Class Retrieval and Late Creation

3.4 Class specifications

3.5 The class manager

4 Materials and Aspects

4.1 Overview of the material cluster

4.2 Aspects in general and in Smalltalk in particular
4.3 The material classes

4.4 The aspect classes

4.5 The aspect clause class

10

15
15
16
17
19
21

25
25
25
26
27
29

Table of Contents

5 Tools in an Environment

5.1 Overview

5.2 Tools — rationale and structure
5.3 Tool components

5.4 Tool composition

5.5 Available tools

5.6 The environment

6 The Aspect Browser

6.1 Emulating multiple inheritance using tool support
6.2 The design of the Aspect Browser

6.3 Using the Aspect Browser

6.4 Method dispatch for multiple inheritance in Smalltalk

7 Conclusions

7.1 Observations on Smalltalk
7.2 Summary

7.3 Future work

Bibliography

31
31
32
35
37
40
40

43
43
45
47
52

55
55

57

57

57

1 Introduction and Overview

This report presents theesign and implementation of a Smalltalk application framework for
the Tools and Materialgletaphor. The Tools andaterials Metaphor is used bwild interac-

tive softwaresystems and comprises some advanced featotes/ailable incurrentapplica-
tion frameworks. The framework offersnaetalevelarchitecture forclass specificationghat
enhanceshe expressivgpower forprogramming. It introduces a rationale and a tool for deal-
ing with aspect classes in the context of a single inheritance system. Finally, it prelesigs a
for constructing software tools based on the experience gained with previous fram&hierks.
chapter introduces the background and motivation for the frameworivaeslan overview of
the report.

1.1 Introduction

The Tools and Materials Metaphor is a methodologyd&areloping interactive software sys-
tems. Next to several methods addressimgdifferent aspects of aoftware development
process, iparticularly provides developers with an elabosseof metaphore/hich serve as
an efficient means tboth interpret th@pplication domain and desigrsaftwaresystemfor it.
The metaphors dbol, material andbthers morédielp developers tenvisionthe futuresystem
and discuss its properties.

Thisreportpresents theesign and implementation of an application framewdnich isused
to implementsoftwaresystems according tthe Tools and Materialsletaphor. Theframe-
work has been developed using IBM Smalltalk running on Microsoft Windows PCs.

Application frameworks have been acknowledged as a major aid in developing object-oriented
softwaresystemgWG94, GOP90, Boo9Bis95]. Frameworks are developed déxperienced
software developers of thegpplication domain. They use their expertiseséd up a software
architecure for theapplication domain which they implement usirigr example, object-
oriented design. Users of the framework reuseddsgn andhus thedomain expertise cap-
tured within. Their softwaredirectly profits fromthe usually wellthought-outdesign of the
framawork.

The application framework is based on prior experience gained dhergesign of a C++
framework for the Tools and Materidldetaphor. The C++ framework wakesignedover a
period of three years #te University of Hamburg [Rie95a, FB5]. TheSmalltalk framework,
however, is not a simple port but comprises several new aspects.

6 Overview

1.2 Overview

Chapter 2 introduces the relevant concépis the Tools and Material8letaphor. It stresses

the aspects of the presented metaphors from a software design point of view. Discussed are the
notion of tool,material,aspect an@nvironment as well asome general implementation tech-
niques that are used to implement them. It further gives an overview of the framework.

Chapter 3 discussdise basic frameworlsupportderived fromthe Smalltalk system classes. It
becameapparent/ery early that some extensionsth@ fundamental classes tie underlying
Smalltalk system had to k#one.This comprises enhancementstbé basic change/update
mechanism as well axtensions to theetalevelarchitecture. Representationaéssproper-
ties as first class objects and general ways of working with them (Class RelrsgeaCrea-
tion [Rie95b, Rie95c]) are presented.

Chapter 4 deals witimaterials andaspect classes. Materials argually application specific
classes and can [ipported by a framewordnly on a very general levelspect classes,

which represent a tool'siew on a materialywere designedrom experience. hthe standard

Tools and Material Metaphatesignorthodoxymaterial class interfacese built by inheriting

from several aspect classes. We shortly introduce the rationale behind this and open up the way
to the Aspect Browser in chapter 6 which is used to handle aspect classes for the framework.

Chapter 5 presents the framewatlissedor software tools and theenvironment. Software
tools all have a commorstructurewhich makes them &ne target forframework support.
Next to tools wediscuss their embedding intbe systemcontext performed by thenviron-
ment and desktop classes.

Chapter 6 presents the Aspect Browser, a toshddel multiple inheritance by copying and
maintaining aspect classes within material class interfaces.

Chapter 7 finally summarizes theport,discusses strengths and weaknesséseoframework,
points outopen problems and presents some conclusion©uliook on future worlcloses
the report.

1.3 Graphical notation

Threekinds of diagramsppear in thigeport. Cluster diagrams shothe structuring of sys-

tems in the largeThey consist ofounded and shaded rectangtgsich represent clusters of
classes. A cluster is a grouping of classes based on some common theme shared by them, for
example all classes used for tool construction.

Class hierarchy diagranstiow aclass hierarchyfor example allclasses appearing in a certain
cluster. These diagrams omit use relationships and consist jtie# diss names and liae
showing the inheritance relation. Figure 1-1 shows such a diagram. It is to be read fiefin the
to the right, showing the superclass on the left and all subclasses to the right of it.

Introduction and Overview 7

AspectsClause MaterialldClause
FPartldClause
AnyClause IPartldClause
IdClause ClassldClause
Clause
NameClause ClassnameClause
IsAbstractClause ToolnameClause
Figure 1-1: A figure from chapter 3: The clauselasses fromthe basic

framework cluster.

Class and object diagrarase based on the object-oriented Booch notatqiained in detail

in [Boo94]. Classesare depicted as clouds. Inheritanmetationshipsare depicted by arrows
and use relationships by circlestla¢ end of an interconnecting line betwéewn classes. Fig-

ure 1-2 shows an example of this kind of diagram.

— — 7L — — 7L — — 7L
/ Environment / TmClass / IdClause
/ / /
Manager V|a cIauseCIassDict4< \

-
\ —
V|a classDict (

o \ﬁ N N

TmObJect Clause 7
(
~ ~ \
N\ T N\ T
Figure 1-2: Design and implementatiostructure of TmClassManagerits

instance creation and the tables maintained by it.

Graphical notation

2 The Tools and Materials Metaphor

The Tools and Materials Metaphor offerq@mber of so callechetaphorsvhich serve as a
guideline tosoftware developers both for the interpretation ofaplication domain and the
construction of a software system. By spanning the full range of analysis, design and implemen-
tation activitiesthe metaphorbaveproved to be anifying approach for developing interac-

tive software system3hey significantly help to bdge the gap betwedargely informal appli-

cation domains and farmal software systenirhis chapter introduces the metaphors of tool,
aspectmaterial and environment whigirovide the needed background to understand the de-
sign ofthe application framework. Based on thisslaortoverview of the framework is pre-
sented.

2.1 Context of the metaphors

The application domains tfie Tools and Materials Metaphor afice work and workshop
like settings. It is assumed that usars knowledgeableabouttheir work and perform it in

skillful ways. Thus, they need no restrictsystembut have to be ircontrol of what they are
doing. Furthermore, users are acknowledged teesgonsibldor their work and its outcome.
We call this understanding of a usesldlls and responsibilitiethe leitmotif guiding our design

of software systems.

We make this understanding of humaork concrete byising design metaphorfSxamples of
design metaphorare tools, aspectsjaterials and environments whiphovide both avay of
perceiving and interpreting application domainsvelf asconstructing softwarsystemdor it.
The design metaphoese used as @emmunication vehicl®oth todiscusshe application do-
main with users and to discuss software designs amongst software developers.

The application othe metaphors takggace within an evolutionary arghrticipatory process
which isnot discussed here. The literature offers several starting poinisite intoprocess
issues [KM93, KGZ93, BGZ95, FG92].

In the following we will introduce the metaphordjscuss theimeaningfor softwaredesign
and shortly hint at standanshplementation techniqudsr them.Finally, we give aroverview
of the framework presented in the subsequent chapters.

2.2 The metaphors

Users use tools to work anaterials. A tool is a means wirk used tcanalyze anamanipu-

late a material which is the outcome of work. When working on a material, a tool makes use of
a specificaspect offered bthis material. Araspect representspassible way of working with

a material needed to perform a certain task. Thus, it is a view on a material required by a tool.

10 Framework overview

The trinity oftool, aspecand material, eacne being called anetaphor, is théundamental
idea behind the overall approach of the Tools and Materials Metaphor. The distinction between
tools and materials is a powerful way of interpreting human work.

When looking at an application domain, we first have to make a distiragiween those ob-
jects whichare used as tools, fexample pencilsypewriters, folders and so forth, and those
objectswhich are used amaterials, forexample plairpaper, forms, address books andny
more.Having made this distinction, we analylzew tools are used to work onaterials and
which characteristics dhese work taskean be capturetbrmally as asects. On gechnical
level, aspects are turned into aspect classes representing the interface of materials to tools.

Aspectsclarify the context of uselheyare used taletermine whether an object is a tool or a
material. A pencil is a tool when writing onpaper but it is anaterial when being sharpened
by a pencilsharpener. The objeathich uses an aspect is a tomshile the objectwhich offers

an aspect is a material in the context of a particular object constellation.

Tools andmaterials have atate oftheir own. A tool is used tonplement idiomatic ways of
handling a material. ltepresents thenaterial tothe user dependent on the tasks the tool has
been designed fotts statecan be subdivided into presentatstate, used twisually present

the material and task bassttewhich holdsthe objectglescribingthe current use situation of
the material from the tool’s point of view.

A well designed tool isinobtrusive and stays in the background. The user’s focus rests on the
material which it accesses and manipulaesording to its needshile usingthe facilities of-

fered by atool. A material carusually beused by a number of differetdols using different
aspects. Thereforeraaterial’s interface is built froraspectclasses whiclare class interfaces
representing thelifferent aspects athe formalized context of use of thenaterial. Aspect
classesareusually alstract classes which leatlee implementation of behavior artde needed
implementation state to the material.

Next to the metaphors ¢bol, aspecand material severather metaphors areeded to suc-
cessfully interpret an application domain, éxample archivegutomatagnvironmentsmedia
and so forth. Here, we shortly introduce the metaphor of environment.

Whatever wedo, we do itwith an understanding of spaa&hin which wearrangeour things.
This space within which weorganizeour toolsand materialsmay haveseveral dimensions,
spatial as well as logical. It is call¢ide environment. We need thraultidimensionakpace to
make sense dhe perception obur workplace and to relate totherpeopleswork places. It
furthermore represents a closureotar world of work so that wéiave clear boundaries and
procedures with other people’s environments.

There ismuchmore to the metaphors than can be presented here. Some of it can be found in
the literature, for example in [BCS92, Rie95a, RZ95, BGZ95].

2.3 Framework overview

We will now give ashortoverview of the frameworkRoughly speakingfor each metaphor
there is a grouping of classes that are used to implement designs adhering to the metaphor.

The framework so far can be separated into foainmlusters. A cluster is a set mosely
groupedclasses whiclare informally put togetheraccording to a common theme likeing
basic framework classes, tool classes or by beargof acertain application. Clusters can be
realizedthrough the IBMSmalltalkconcept ofApplication, which is essentially synonym for
cluster. Our notion of cluster stems from Eiffel [Mey92]

The Tools and Materials Metaphor 11

Figure 2-1 shows an overview of the framework. It is hierarchically structured with the clusters
beingrepresented as rounded rectangleslependency betwedwo clusters is expressed as
an arrow going from the dependent cluster to the cluster on which it depends.

Environment

Cluster

) / . N

) Tool

Material Cluster
Cluster
_ \I/ Y,
Framework
Metalevel Cluster
_ Y,
Vi i
OTI Smalltalk OTI Smalltalk
Kernel CommonWidgets
Figure 2-1: Framework overview based on the groupinglagses into clus-

ters (applications in IBM Smalltalk terminology).

Thetwo clusters below the line are tBgstem provide&ernel andCommonWidgetslusters.
They are part of OTI Smalltalk on which IBM Smalltalk is built.

On top ofthe Kernel the FBaseClustelis built, a clustemhich comprises basic framework
classes which offer an enhanagdthnge/updatmechanisnand some new meta-leviacilities.
The change/updatmechanism isied to theclassTmObjectwhich isthe root class of almost
all framework classes.

AspectsClause MaterialldClause
FPartldClause
AnyClause IPartldClause
IdClause ClassldClause
Clause
NameClause ClassnameClause
IsAbstractClause ToolnameClause
Figure 2-2: The clause classes from the basic framework cluster.

The classClauseand its subclasses viewed in fig@€ represent sipte classproperties as
first class objects. Thegre used for a sipte representation of class semantsch is needed
to determine classes based on given specificafidresneededacilities for looking upclasses
are located a¥mObjectclass methods iturn. The most importaritenefit of such acility is
to retrieve classes amteate objects withoudtaving to determinéhe classes directly which in
turn makes systems much easier to change [Rie95b].

12 Framework overview

Figure 2-3 shows thematerial cluster comprisinthe general supercladglaterial and some
basic materialKolder, Document SimpleDocumeitand aspect classes. Materials oaly be
partially captured by a framework since they are usually application domain dependent.

AspectClause Indexable
Listable
SimpleAspect SimpleTextEditable

Clause

TmObject pspect < SimpleTextViewable
Material Folder CompositeAspect —SimpleTextBrowsable
Document ——SimpleDocument
Figure 2-3: The class hierarchy of classes fridme material cluster. lgroups

together all aspect and material classes comprised by the framework

Figure2-4 shows thdasic classes frorhe tool clustewhich inturn isviewed in figure2-5.
These classes comprise muchtloé design experiencér software tools according to the
Tools and Material Metaphor known today. Tools strecturedhorizontally according to the
pattern of separation of interactitmom functionality and verticallaccording to tool compo-
sition rules frontools and subtool®bjects ardinked viathe change/update mestism. The
underlying patterns are explained in more detail in [Rie95a, RZ95].

N

/ CompIexToon

(\

—

/" Composite y /" Composite y

<\ Ip Q—(\ Foo

Figure 2-4: The basic toolclassegor composingtools vertically out of user
interface, interaction and functiongarts,and horizontallyout of tools and sub-
tools through composite classes.

The full set ofclasses fronthe tool cluster are shown figure 2-5. It comprises thdrame-
work classedJPart, IPart, FPart andTool as well asome specifi¢ools like alister, asimple
editor, viewer and browser.

The Tools and Materials Metaphor 13

Environment

NameClause —ToolnameClause
Clause < FPartldClause
IdClause <IPartIdClause

MaterialldClause

ComplexTool —SimpleTextBrowser
TmObject Tool Lister

SimpleTextEditor

SimpleTextViewer

CompositeFp ——SimpleTextBrowserFp
ListerFp

SimpleTextEditorFp
SimpleTextViewerFp

Compositelp —StmpleTextBrowserlp
Listerlp

SimpleTextEditorlp

SimpleTextViewerlp
SimpleTextBrowserUp

ListerUp

SimpleTextEditorUp
SimpleTextViewerUp

FPart

Material

IPart

UPart

AAN

Figure 2-5: Overview of the classes from the tool cluster (on the right).

Finally, figure 2-6 shows thesnvironment class which tiedl the clusters togethemnd is the
first class to be instantiated during system startup. It creates and manages all tools.
7N

—

/ Environmen'F/

ﬁ\/\/\ T/\\ N
TmCIass Y,

Tool Material
< Manager
~ ~ ™~ \
.\ 7 .\ 7 L7 -
Figure 2-6: The environment cluster and its relationships to classeshef
clusters.

This reportpresents the clustessiccessively. It discusses its class interfaces in detail. It may
serve as a technical documentation, however, it is not a cookbook for using the framework.

14

Framework overview

3 Basic Framework Support

Very early it becamapparent that severahhancements tthe basic clasbjecthad to be
done. Instead othangingthe vendor providedlass we chose to introduce an intermediate
superclass, calledmObiject It is theroot class ofall Tools and Materiatlasses (prefixed with
Tm) of the frameworkTmObjectoffers an enhancesupport for thegeneral change/update
protocol aswell as metalevel facilities thaet clients retrieve classes aagkate objectsising
simple specifications. We will take a look at these facilities in turn now.

3.1 Overview of the basic framework cluster
FBaseClustercalledthe basic frameworlcluster fromnow on,comprises thelassesTmOb-

ject, TmClassManagetClauseand sometherclasses as well. The classee listed iffigure
3-1. The three classes just named are the most relevant abstractions offered by the cluster.

TmClassManager AnyClause
IdClause ClassldClause
Object TmObject Clause
NameClause ClassnameClause
TmPair IsAbstractClause
Figure 3-1: Class hierarchy of the basic framework cluster.

The classS'mObjectoffers both new instance methods for an enhanced change/ppaateo|

and new class methoflsr retrievingclasses and creating objects based on class specifications.
Section 3.2 presents tlehanced change/updaieotocol and sectior3.3 to 3.5 introduce
class specifications and a rationale for using them.

The clasClauseandall its subclasseare thebasicconstituents of class specificatiofi$iey
represent simple properties of a class,exmmplewhether theclass isabstract or not, has a
certain name or id owhether its instances cavork with specificotherclasses instances. The
class tree is discussed in section 3.3.

The classTmClassManageserves as a managifagility to keep track of the properties of the
different classes frorthe framework. It holds bst of clause instancdsr eachclass with each
of this clauses representingspecific property of a class. It furthenaintains table$or fast
lookup of thoseclasses based on clause instances. Thparisof thementioned specification
mechanism and is dealt with in section 3.4 and 3.5.

16 Enhanced change/update protocol

3.2 Enhanced change/update protocol

Object-oriented softwardesign and implementation is very muboutmanaging dependen-

cies between objects. Each object that asether object becomes dependent on tstvbf

the time, the dependency of a superordinate object on a subordinate object is uncritical. The
superordinate object controls the subordinate object and takes care #tateitssynchro-

nized with the subordinate object’s state.

Some of these dependencies, howevercatieal and require feedback frothe subordinate
object to the superordinate object. Tdh@ssical example is a viesbjectwhich uses a certain
model object andhus depends on thmodel’s state.Sincetheremay beseveral views on a
single model, thenodel might changithout all of the views takingnotice of it. Thushey
might loose synchronization. These problarss discussed in more depth in [KP88] and as the
Observer pattern in [GHJV95].

This lead to the introduction of the change/update mechanism wtlaehilable in Smalltalk as
the operationghanged:andupdate: of classObject Changed:is called bythe subordinate
object toinform all dependent objects abouthange of itstate.Dependents register and un-
register usinqaddDependentandremoveDependentOn the superordinate object’s side;
date:is called. The subordinate objectaled subject anthe superordinate objects aaled
observers.

IBM Smalltalk offers onlythe mostbhasicchange/update protocol imassing a single object to
its observersThis single object isisually aconstant denoting a certain event, that sate
transition of the subject. An observer, however, patentially observe more thansigle
subject.How can it make a distinction betwet#re same event received from a number of dif-
ferent subjects? This is an important question that slipwfor example, if a tool tries to re-
use several subtools tie same classThus, an observer must l@abled to distinguish be-
tween the subjects that sent an event by catliranged:

Therefore, thelassTmODbjectwas enhanced with a naypdate:from:operationwhich passes
in an additional parametdfrom: names the subject that originated the event.

update: aSymbol from: aSubject
“do nothing by default”

The operationghanged:andupdate: have been specialized TmObjectto supportthis en-
hancementChanged:builds a simple pair using cla¥snPair to put together thevent with
the subject, andipdate: deconstructs the pair amalls update:from: This way,the already
existing change/update mechanism was reused. It shoskid#hat this enhancementisil-
able in other Smalltalk implementations like VisualWorks right from the beginning.

Based orour experience with this change/updatetocol we suggest@ertainpolicy of using

it which is not mentioned in the otherwise excellent discussion in [GHJV95uddege:from:
operation should be designaltiover theapplication in asimilar fashionlts only purpose is to
delegate the received event to an operagsponsibldor reacting to this event. None thfis
codeshould be directlyncorporated into thepdate:from:operation. Next to delegating, the
update:from:operationmay also gather the parameters for the ewag®cific operation it is
going to call so that this hasn’t to be done by the operation itself.

Thefollowing code was takefrom classSimpleBrowsewhich has taeact to theselection of
a new item in théister subtool by switching the currently displayed item.

Basic Framework Support 17

update: aSymbol from: anObject
aSymbol == #cEvitemSelected ifTrue: [
Aself switchltem: (self listerFp selectedltem)].
super update: aSymbol from: anObject.

It shows the standard conventionsnaimingevents ¢EvitemSelectgdand dispatching the
event to the proper operatioswitchltem:with appropriate arguments). Thaming ofevents

shouldstate whahas happened antbt what thesubject assumethe observerdiave to do,

that iscEvitemSelectethstead ofcEvitemSelecbr cEvSwitchltemlt is left to the observer
how to interpret the event.

At the end of thaupdate:from:operation one shouldot forget to call thesuperclass’sip-
date:from:operation (if needed) so that no events to be handled by the superclasses are forgot-
ten. See Chain of Responsibility in [GHJV95] for applications and further implications.

3.3 Class Retrieval and Late Creation

Systems designed accordingthe Tools and Material Metaphasuallyrequire a major con-
figuration management overhead, since eashocnermight require alightly different version
of the system.For example, each stomermight want to choose different subset of the
overall set of possible tools to be delivered. Instead of hardcodlagk&opclass which brings
all tools to the usersyes it is preferable to specify on @&talevel which classeare to be in-
corporated into thénal image. The system then has to determine at runtimeh tools can
be accessed. On tiechnical level, this boildown to retrievingall classes from a certaglass
tree, for example the tool class tree, whichaalable inthe system. Thigprocess wasoined
“Class Retrieval.”

As anotherexamplesuppose that the user doubleeked on a material icon otme desktop.
This is to benterpreted as the usengsh to startup adefault tool for thematerial. How can
the system determine lvat the default todk? The materialtself shouldnot knowsince mate-
rials nevelknow aboutspecifictools designed for them. However, a tadhss carstate that it
has been designddr a certainmaterial and that it would like to liee default tool forthis
material. Onthe technical levethe environment handlinghe doubleclick on the material has
to determinghe toolclass and theareate annstance of itThis has been coined “Late Crea-
tion” (resembling late binding), becau$e class of a new object is determinsak atcompile
time but only at runtime.

Both class retrieval and late creation serve a commopose.They let clients solve class re-
trieval and instance creatidasks on a gener#&vel without directly referencing classes by
name. Therebythe clientsgetindependent fronconcreteclasses which makeke system eas-

ier to change. Essentiallihe classtrees can be encapsulated andrtfemtioned tasks can be
solved on a gener&vel using onlythe abstractlasses othe classtree. These issues and the
implicationswere explored and discusseddietail in [Rie95b, Rie95c]. Th®llowing discus-

sion andthe implementation irthe framework are based on the concepts elaborated in the ref-
erenced works.

The tasks otlass retrieval and late creation have been generalizednpieimented as class
methods of clas3mObjectso that users of the framewankay use thembut don’thave to
bother with the details of its implementation.

Thetwo examples mentioned above requordy little coding effort on thelient side. The en-
vironment class uses the following piece of code to retrieve all classes from the tool class tree:

18 Class Retrieval and Late Creation

initToolClassCol
toolClassCol := IndexableWrapper new:
(OrderedCollection new).
Tool getClassCol: toolClassCol byClause:
(IsAbstractClause new: false)

The first statement creates a collectionmvnich the toolclassesare to be put. The second
statement askslassTool by callinggetClassCol:byClauseo putall concretesubclasses into
the collection. Thekey part of this operation call ishe byClause:parametewhich gives a
specification fothoseclasses thatre to be put into theollection. The specification here is an
instance of clastsAbstractClausevhich denotes whether @lass has to be atsact or con-
crete.

The late creatioexample is implemented in a similar fashion in clBssironment Here, the
class method ofcreateByldClause:serves to replace the ubiquitous factory methods
[GHJV95] that are present in soanyclass interfaces. It is assumed that a single detfawilt
class exists for every concrete material class, so that the following mapping is unambiguous:
createToolFor: aMaterial
| aClause aTool |
aClause := MaterialldClause new:
(aMaterial class symbol).
aTool := Tool createByldClause: aClause.

aTool ~~ nil ifTrue:
[self addTool: aTool].

In the third line annstance oMaterialldClauseis createdvhich holdsthe symbol ofthe ma-
terial classthe new toolclass has to fit. Inthe fourth line, the tool is createdising
Tool>>createByldClause:

A similar examplecan be taken fronthe implementation of clas€ompositelpwhich has to
create the interaction part for the functional part of a new subtool:
createSublpFor: anFPart
| aClause anlPartClass |
aClause := FPartldClause new: (anFPart class symbol).

anlPartClass = IPart getClassByldClause: aClause.
self addSublp: (anlPartClass new: anFPart).

This time,however, the late creation process is broken uptmtosteps. First, in line 3, the
functionalpartclass matchinghe previouslycreatedclause is retrieved, and then, in line 4, the
actual instance of the interaction part class is created parameterizing it with its functional part.

In previous versions obur frameworks [Rie93a, Rie93b] these problemsre originally
solved using factory methods. Eaaser of the framework was requiredgjpecializethe fac-
tory methods for the single purpose of creating a fitting object.

TmObjectoffers currently five operations dealing with these issues, namely:

createByldClause: Creates an object of a clagsecified bythe IdClauseinstance that has
been passed in.

getClassByldClause: Looks up theclass which has beetienoted by thegiven IdClause

instance.
getClassCol: Puts all classes which mattie given specificatiorfsecond argument)
byClause: into the collection (first argument).

getConcreteClassCol:Puts all concreteclasses inthe given classtree into thecollection
which has been passed in as an argument.

getFullClassCol: Puts every class from the class tree into the collection.

Basic Framework Support 19

These operations aeevailable as clagsiethods of clas¥mObject If called on a subclass of
TmODbject all specification matchingrocesses are restrictedttos subclass and its subclasses
in turn. CallinggetConcreteClassCobnTool reveals only concrete classes derived fiiaol.

3.4 Class specifications

We have justouted thegeneral idea of retrieving classes and creating objects using its super-
classes only. Systems becomere easier to changance wedon’t have todirectly name

classes anymore. Naming classes has always to be done by providing additional code which has
to be changed if class names or classes change.

To make up fothe information loss of class names, specificatimese introduced. The speci-
fications we use avoithe overhead thatsuallycomes with such approaches by providing an

easy touse object-orientedcheme of expressing classoperties All class retrieval and late
creation operations are based on trgeifications. The class methodsToiObjectexpect a
specification to be passed in. It evaluates based on these specification which classes the client is
interested in.

Each simple property of @ass isepresented by an instance of a subclastasEClause An
instance of clause classAbstractClausendicates whether a class isséfact or not. It is im-
plemented by a simple flag. Several more clause classes exist as depluteahvErviewgiven
by figure 3-2.

It has to be said that a gite property of aclass is only a veryestrictedkind of specification.
However, the representation of gi@properties as objectmight bethe very foundation of

more enhanced specifications than jhst sinple standalone properties. It carsi®abe imag-

ined to use propositional calculus or even predicate calculus based on clauses [Rie95b,
Rie95c]. However, these advandadds of specificationgre notavailable inthe current ver-

sion of our framework. In thefollowing discussion weherefore assume gpecification to
consist of a single clause.

AspectsClause MaterialldClause
FPartldClause
AnyClause IPartldClause
IdClause ClassldClause
Clause
NameClause ClassnameClause
IsAbstractClause ToolnameClause
Figure 3-2: Overview ofall clause classes ite framework. The loweleft

part areclasses fronthe basic frameworlcluster, the uppeleft clause class is
from the material cluster anthe clause classes dhe right are from the tool clus-
ter.

We will now discussthe basic interface of clasSlause the properties represented é&gch
clause class and how a clause instance retrieves its information.

What is relevant about a clause instance? It has to be comparable with other clause instances of
the same class, so thtte matchingprocesses described in the next section can be carried out
easily.Each matchingrocess is carriedut between a clause from a specification and a list of
clauses maintaineidr each class. The clausesintainedor eachclassrepresent the proper-

ties of that class.

20 Class specifications

Furthermore, clause instances have tanii&lized in one oftwo different ways. Firstthey

have to receivéhe propertieshey represent frorthe client. The clienknowsexplicitly which
classes it is interested in and can theretbrectly express this using claus&econdclause
instances are to be created for a certain class. Thus, they have to tie¢ridata for the prop-

erties they stand for directly from the class. In the current implementation they do so by using a
so called property method which offers the data needed by the clause.

Finally, it has to be taken intaccount that @lause classnay not beapplied to every class in
the systembut only to asubset of classes. This subset is indicated tmoaclass. The clause
classworks for this root class andall its subclassediVhile IsAbstractClausenvorks for any
class fromI'mObjecton, MaterialldClauseworks only from the root cladsol on.

Summarizing, three main methods of cl@susehave to be implemented:

adaptToClass: Adapts clause instance t@pecific classThe clause instan@nalyzes
the passed in class and setattsbutes according to thetass’s prop-
erties.

matches: Comparegwo clause instances. This is by default a type check fol-

lowed by an equality check.

root Returns theoot class whichthe clause class has been desighad
This is both an instance and a classthod. It should bepecialized as
a class method.

The adaptToClassandroot methods, arspecific to each clause class ahds have to be
reimplenented.

The following is a list of the clause classes, their meaning and implementation.

AnyClause An instance ofAnyClausematches withany other AnyClausenstance
and can be used to retrieaitclasses from a clasee. It worksfrom
classTmObjecton. Itcan be adapted @ny classand doesothing by
default.

NameClause A name clause holds a string which has to be matched by a class as its
name NameClausés abstract and intended to be reusedubclasses
which specify which name of a class is relevant.

ClassnameClause A class name clause holtlse class name as a string andhe most
obvious example of a specialization MameClauselt works from
TmObjecton and extracts thelass name usinghe standarclass
methods of a class.

ToolnameClause A tool name clause holds a string indicating the tool namespéeific
tool class.lts root class isTool which offers a classnethod called
toolNametool name clauses rely on.

IsAbstractClause An IsAbstractClauseénstance denotes whethée class is abtract or
concrete. It'sroot class isTmODbjectand it relies on a class method
called isAbstractto determine whethdhe class it standgor is ab-
stract or concrete.

AspectClause An aspect clause instanggoups anumber ofaspects together to
identify a material thasupports these aspectshdlds a list olaspects
either requested by tratient or offered bythe classthe aspectlause
stands for. Theroot class for AspectClauseis Material. Aspect
clauses use the class metlagpectClassesf Material.

Basic Framework Support 21

So far, theldClauseclasstree has been left outdClauseis an abstract class that serves as a
superclass to several kinds of id clause classes. The kelyabipaithe abstractiohdClauseis

to have clause instances whidanote a singlelass. They do so bgiving an unambiguous
identifier through the method itHClauseenhance€lauseby this singleattribute and the cor-
responding access method.

Id clausesare needed if annambiguous mapping i®quired, forexample from material to
default tool class, or from functiongért todefault interactiormpart, or frominteractionpart to
default user interface part (see section 5-2 and 5-3). Gmgilementation side, id clauses can
be used for a fast table lookspheme ofienoted classes, so tliddss retrieval and late crea-
tion can be implemented ronstant time. Thus, they consutimee in the order offactory
methods which they serve to replace.

FPartldClause FPartldClauséasthe root classIPart and denotes thEPart the in-
teraction part has been chosen to be the default for. It is built using the
class methodPartClassof IPart if instantiated for the class. itistan-
tiated by a client, idirectly receiveghe furctional part theinteraction
part of which it is used to look up.

IPartldClause IPartldClausedoes thesamefor user interfaceparts whatFPartld-
Clausedoes for interaction partRootclass isUPart. An interaction
part id clause uses the class metiattClassof classUPart.

MaterialldClause A material id clause identifies a material which a default tool is to be
looked up for. It'sroot class isTool and it is built usinghe class
methodmaterialClassof classTool.

Each of theclause classes forced us to introduce a smggation for thelausesToot class.
IsAbstractClauseelies onisAbstract FPartldClauserelies onfPartClass MaterialldClause
relies onmaterialClassand soon. These operations are a simplay of specifying class prop-
erties, so that a clause can retrieve them and makeexoit as anobject (instead of the
operation).Subclassing a class requirggecializingthese operations according to the new
class’s properties, if we want it to participate in the class retrieval and late creation facilities.

At first glance it seems that we have giventhp advantage of code reduction ganed by
omitting factory methods. However, factory methods semg a singlepurpose,while the
property methodsay bereused forall kinds of specificationg-urthermore, we donttave to
specialize everproperty method butly ontheir default implementation. Given &Abstract
implementation of clasemObjectwhichreturns true, wenly have to specialize thigperation
for those classes which are concrete.

3.5 The class manager

Section 3.3discussed théunctionality available taisers of the framework. Section 3.4 dis-
cussed clauses and specificatidhg,clause classes availatdad howthey are implemented.
This section irturn presents thepecification matching and claksokup functionality behind
the scenes.

Summarizinghe previous sectionsyo major questions remain unsolveédow and where are
classpropertiesmaintained andhow arethey used to match and lookajasses? This section
addresses both questions.

The implementation dhe tasks to be dorfeas beeffiactoredout intothe classTmClassMan-
ager of which a single instance seated during runtimél’his instance holds tablésr each
regular class and its properties as well as tables for all kinds of id clause classes. It provides the

22 The class manager

basic functionality to match a clause with a specific class ardotap aclass based on a
given id clause instance.

At present, thdirst objectwhich iscreated duringystemstartup, theEnvironmentinstance,

also creates the singiestance ofTmClassManageand sets it talassTmObject All class
methods ofTmObjectareimplemented irterms of thanstance methods diie TmClassMan-

ager instance they receive. We have chosen dbisroach of creating an instance areagh

time instead of havinthe class maintaithe tablegersistently because itri®t clear to us yet

how system startup behavior will be defined in the target system. By calculating the tables from
scratch we also avoid updaimblems that come with system changes. Sthetuptime didn’t

yet lead to perceable delays.

— — 7 — — 7 — — 7
/ Enwronment\/ / TmClass /" IdClause 7
Manager V|a cIauseCIassDict4< \

-
\ —
V|a classDict (

o \ﬁ N N

TmObJect Clause 7
(
~ ~ \
.\ 7 .\ 7
Figure 3-3: Design and implementatisiructure offmClassManager , its

instance creation and the tables maintained by it.

The class methods dmObject mentioned in sectioB.3 areimplemented interms of two
simple operations of mClassManagernamelylookupByldClauseand matchesClause:for:
Thesetwo instance methods iturn rely ontwo internal dictionariesglassDictand clause-
ClassDict

MatchesClause:forteceives a clause instance as its first and a class as its pacantter. It
returns true, if the class offers the property specified in the clause instance.
matchesClause: aClause for: aClass

| aClauseDict bClause |

aClauseDict := classDict at: (aClass symbol).

(aClauseDict includesKey: (aClause class symbol)) ifFalse:

[~Malse].
bClause := aClauseDict at: (aClause class symbol).
~ aClause matches: bClause

As shown in the abovemplementation,matchesClause:forfirst retrieves a dictionary of
clause instancedl instantiated for apecific class by indexinthe classDictwith exactly this

class. It then looks up tletass specific clause instance udingclass ofthe externatlause as
an index. Finally the retrieved clause and the external clause are matched.

The second methothokupByldClause:returns theclass which islenoted by the received id
clause. It is implemented using a dictionary indexethiyid clause class, which leads to an-
other dictionary that is indexed by the id retrieved from the id clause itself.

Basic Framework Support 23

lookupByldClause: anldClause
| aClassDict |
aClassDict := clauseClassDict at:
(anldClause class symbol).
(aClassDict at: (anldClause id) ifAbsent:
[~nil].
"NaClassDict at: (anldClause id)

Theinitialization procedures of thdictionariesare more complicated amobt explained in de-
tail here.They areimplemented in atraightforwardway by usinggetFullClassCol:andget-

ConcreteClassColwhich are implemented independently dfie mechanism explainebere.

Essentially, these are simple traversal, gather and build methods.

24

The class manager

4 Materials and Aspects

This chapter discussebe classedMaterial, Aspectand their subclasses. We discuss questions
of multiple inheritance&and how tamodelaspectlasses in Smalltalk. Wius prepare the way
to the Aspect Browser presented in chapter 6.

4.1 Overview of the material cluster

MaterialCluster the material cluster froomow on,comprises théasic material andspect
classes othe overall framework. The class hierarchy in figdrd shows thelasses from the
cluster. It introduces a new clause clagspectClausewhich groups anumber ofaspect
classegogether so thamnaterial classes can be matched witiThe nain part is thematerial
classtree startingwith classMaterial. It comprises thé\spectclasstree and some general
material classed$-plder, Documentetc.).

AspectClause Indexable
Listable
SimpleAspect SimpleTextEditable

. SimpleTextViewable
TmObject Aspect <
Material Folder CompositeAspect —SimpleTextBrowsable

Document ——SimpleDocument

Clause

Figure 4-1: Main part of the material cluster’s class hierarchy.

Materials, aspeatlasses and their subclassesmaintained irthe same cluster. We thirtkat

this is justified, since the aspect classes to be discussed are very general. It is important to point
out, however, that tool, aspesmdid material classes form a trinity which @ty understood

well enough when considered as a whdlere specializedools, aspectand materialswill

probably be put together into a cluster of their own.

We will take a look now on thelassMaterial, the simplanaterial subclasses offeratie As-
pectclasstree and theclassAspectClauseBefore doingso, however, wedve to reconsider
the question of implementing aspects in Smalltalk.

4.2 Aspects in general and in Smalltalk in particular

Generally speakingspects represemtays of handling materials fromtaol's point of view.
Theyarecalled apects, because thaye confined to a specifitask the requireflinctionality

26 The material classes

of which they make explicit. Thegre formalized asaspectclasses whiclexpress their func-
tionality as a class interface.

A material has several pects,sincethere areusually several ways of handling On a soft-
waredesign level this means that we havetovide access to a matenah each aspeatlass
that represents an aspect the material offers.

There are at leasivo well-known techniques fohandling such aituation: mitiple inheri-
tance and wrapper technology. In the case dfipleiinheritance, we model a material as the
subclass o#ll those aspedatlasses whicliepresent the aspects timaterial offersThus, the
material offersall the methodslefined bythe aspectlasses directly apart ofits interface.
This solution is chosen, the aspect is considered to be a permawagtof handling a mate-
rial thatcannot be attached and removed awee. Such an aspect isually a very general
way of working with a material like listing or indexing.

Wrapper technology is a differeapproach. A wrapper object adaptgigen interface, the
aspect class, to the interface of a specific material class. The wremeras a representative
hiding the material fromthe tool. However, it acts dmehalf of itand is implemented in terms
of it. Modeled this way, interfaces can &gached to and removed ovene from a material.
This approach isisually closen if an aspect is considered toapelication specific andsing
multiple inheritance would interfere with other applications.

The obvious problem is that we can’t useltiple inheritance to design a material’s interface
since Smalltalk is a single inheritance system. We@isternot to temper with themetalevel
architecture of IBMSmalltalk.Furthermore, it is10t sensible toely only onwrapper technol-
ogy since iposesseveral problems: The numbenmafapperclasses tends to explodbe state

of a material is spread over several (wrapper) classes and no distinction betweerliegpslar
and aspect emulating clients is possible anymore [OH92, HO93].

We therefore chose to emulateltiple inheritance in amspectspecific way: Wewrite aspect
classes as standacthss interfaces and use a tool to ctipy methodsrom anaspeciclass
into the material class interface. Essentialdspectclasses specifprotocolswhich are then
attached to material classes.

This tool, the Aspect Browsedescribed in chapter 6, is used to deal widintenance and
evolution. Modeling a material'aspects thisvay works, because Smalltalk idynamically
typed. Thus, if anaterial is passed to a toodibesn’thave to offer a specifiaspectlass as a
superclass but only the methods defined by that aspect class.

These questions are elaboratedetail in chapter &vhich presents the Aspect Browser. Here
we confinethe discussion tdhe class hierarchy, its functionality amdw a user of th&rame-
work makes use of them.

4.3 The material classes

Materials are the intermediate afivthl products of work processebheyare the outcome of
work performed by usingools. Usergerceive materials and manipulate thenty indirectly
through themediatingtools. Thepossible ways of handling a material frontoal’'s point of
view are captured as aspeethich inturn areformalized asaspectclasses (see previous and
next section).

The notion of material is expresstmally by one of the central abstractions of fin@me-
work, theclassMaterial. Almost any class is a subclassitofThis applies equally tabstrac-
tions that are esgly recognized as materials, like folders and documents, and abstralstbns
are not swbviously recognized as materials l&epects antbols. Theyare discussed itheir

Materials and Aspects 27

respective section. In this section we focustloa classMaterial and its subclassd=older,
Documen@andSimpleDocument

Material has no instance metholdat anumber of class methods that let usersvel$ as the
Aspect Browser access and mutate the aspasses offered by a certain material. Dasic
idea is that each material holds a collectioragppect classeSinceaspeciclassesare classes
and thus objects themselves, this can be @aisdy. The aspectlasses irthe collection are
exactly those aspectlasses whicltorrespond with the aspects of thmaterial. The aspect
classesareimplicitly present in thenaterial’s interface since it comprisel the methods of-
fered by these aspect classes.

The following list shortly presentonly the most obvioudiaterial class methodssince they
are discussed in more detail in chapter 6.

addAspectClass: Adds an aspectlass tothe material’s internal collection oéspect
classes. No implicit update of the class interface is done.

removeAspectClass: Removes thegiven aspectfrom the internal aspectclass collection.
Again, no implicit updates are connected with this method.

hasAspectClass: Returns true if thenaterial class offerthe given aspeciclassboth in
its collection and its interface.

aspectClasses: Returns the collection of aspect classes offered by the material class.

Next to thegeneral supercladdaterial, the subclasse&older, Documentand SimpleDocu-
mentare available. However, they have been used for demonstration purposes anduglyntain
the most obviousunctionality. In an extension afe framework for apecific application do-
main, for example in acustomer supporsystem, they have to be extended or replaced with
similar but more enhanced classes.

The clasg~older is a material class tha¢presents thbasic folder: it has a table cbntents

and contains some documents. From this the aspects of the folder become obvious: It has to be
indexable and listable. It has to be indexable beddugsdocuments in the folder amesumed

be maintained according to a giverder, that is @able of contents. As an alternativeli®ing
indexable it might have separate table of contensich may berequested byglients. It has

to be listable because we assume that a folder caoriiained in another folder. Tlielder

class is implemented iterms of an orderedollection. It offers the aspectassedndexable
andListablerespectively which are discussed in the next section.

A folder may contain documents, so there is a quite general docuctaes calledocument
and a subclass call&mpleDocumentThe general abstraction Bocuments only expected
to be a listable kind of something, so currentlymore assumptionabout a document are
made than just being listable. This is expressed by the aspedtistasde

ClassSimpleDocumentepresents a concrete thougdsicdocumentwhich cannext tobeing
listable edited as a simple text. Thus it offers the aspectSiagseTextEditable

4.4 The aspect classes

An aspectlass expressdhle functionality needed by a tool twork on amaterial. This func-
tionality is derived from araspect of thematerial whichcapturesdomain and tookpecific
ways of handling it. An aspect is confined to a single task.

Thus, an aspedlass is expressed as a regular classagypectclass has no implementation
state ofits own, however, it declares through iitterface an abstrastatewhich clients can
rely on. It would be desirable to have specification like features that make dependertsss,

28 The aspect classes

and the abstradtate spacexplicit. However,Smalltalkdoesn'’t offer theséacilities and thus
we didn’t take further steps into that direction.

As shown in figured-1, we introduced general superclagsspectwhich inturn is asubclass
of Material. From a conceptual point of vieanyobject is a material as long as we sansi-
bly think of a tool towork on it. Forexample, araspect is both way of handling a material
and a materialor the Aspect Browser. Even a tool israterialfor somekind of metatool
that can be used to manipulate or fine tune it.

We therefore chose to makepecta subclass dflaterial. So far, no general functionality is
tied to this inheritance relationshiplowever, we careasily think of providing classAspect
with the aspectistable since anyaspectlass as a material tie Aspect Browser appears in
some lists. Thenly reasorwhy thishasn’t beerdone yet is because the Aspect Browser was
developed in parallel to the framework andag implemented based on The next version of
the Aspect Browser will be based on the framework.

Since araspect is also material, we introduced aspects as classe<laszification hierarchy
as shown in figurd-2. An aspectlass can either be a simglgpectlass or a compleaspect
class (made explicit bthe superclasse&&impleAspecdbr CompositeAsperLtA complexaspect
class is based on more thane aspectlass andhus holds a collection of “super aspect
classes” which itvould inherit from in case of nitiple inheritance. A sirple aspectlass is an
aspectclass which is independent other aspectlassesListable and Indexableare simple
aspect classesyhile SimpleTextBrowsables a complexaspectclass composedut of the
simple aspect classkstableandSimpleTextEditable

The classe#&spect CompositeAspednd the simple aspectclassesare animplementation of
the Composite pattern [GHJV9Hssentially, a single rootddee of aspeatlasses is realized
which, if turned upsidelown, is a representation of the desiredtipla inheritancestructure

between aspect classes.

Indexable IndexableWrapper
_ Listable ListableWrapper
SimpleAspect SimpleTextViewable ——SimpleTextViewableWrapper
SimpleTextEditable ——SimpleTextEditableWrapper
Aspect
CompositeAspect —SimpleTextBrowsable ——SimpleTextBrowsableWrapper
Figure 4-2: The aspectlasses fronthe material clusterNot shown is the
superclass ofAspect , classMaterial . New are the wrappetlasses on the
right.

The chapter about the Aspect Browsexplainsthe structure of simpland complexaspect
classes in more detalere we focus on the contents of the aspect classes. falltveing,

we discusshe aspectlasses whiclare currently provided by the framework. The overview of
figure 4-2 shows them and some wrapper classes.

Listable The aspectlass Listable offerghe functionality required from a ma-
terial in order to be represented bystaing inany kind of listlike
structure. The operatiortdfered ardistName = and<=. ListName
returns amaterial specific string that can sed as aamefor the
material. By default it is implemented usipgntString The compari-
son operators realizesLastable specificordering relation of the ma-
terial so that it can be presented using a default ordering scheme.

Materials and Aspects 29

Indexable Indexabléets tools accessmaaterial using an index. It lets them iter-
ate over thamaterial. Thus, it representise interface to arordered
collection and indeed, in its currestiatejust replicates thiprotocol.

It should benoted that prioexperience shows that collectiolasses
are problematic to use directly as a material. They stamijdbeused
to implement application specific materials or collection clagdgsh

have a suitable interface for the tasks at hand.

SimpleTextEditable SimpleTextEditalpeesents thenterface to a plain texstructure
consisting of simple paragraphsthout further formattingunctional-
ity. The access and mutation methedsk on the abstrachodel of
an indexable collection ddtrings, each on representing a paragraph.
The basic metbds ardextandtext: to get and set the full text.

SimpleTextViewable SimpleTextViewalleclares a simple string representation of the
material. Thus it offers only the operation text to retrieve a string.

SimpleTextBrowsable The complexaspeciclassSimpleTextBrowsabls thecombination of
ListableandSimpleTextEditabldt offers no additional methods.

The presented aspedfssesare obviouslythe mostbasicones one cathink of. The frame-
work has still a long way to go here, since we haven't yet incorporated dspeaific classes.
However, theselomain specific classese the meat thahake a framework usabfer a do-
main likecustomer supporystems in a bankingpntext. Once we M focus on thesdomain
specific classeghe needed tools, aspedasses and materialsiwcome into existence and
evolve.

Onefinal word with regard to the wrappetasses depicted in figure2. They are subclasses
of their respective aspectasses andre parameterized with blocks so thatistableWrapper
or a SimpleTextEditableWrappeanstance carwork on any material. The adaptation func-
tionality is contained within the blocks.

These wrappeclassesare intended for use in situations where nas sensible tananipulate
the original class. Thus, it is wrapped faspecificaspect. As a consequence, thiginal class
can't offer the block#tself to provide a wrapper with the adaptation blocksey have to be
maintained by clients or in a new class. This either increébeggimber of classes or spreads
blocks in clientcode. Both situationshould be avoided. Thus, these wrappasses exist but
aren’t used in the current framework. So we don’t discuss them any further.

4.5 The aspect clause class

Finally, the aspect andhaterial cluster offerthe classAspectClauseThis clause class holds a
list of aspect classes. It is used to either represent the atgeses a material offers or to re-
trieve a material which offers the aspects indicated by the clause.

AspectClause An aspect clause instanceci®ated for eachaterial and holds a col-
lection of its aspect classes. Its root claddaserial. It is built using a
material’s class methodspectClassesClients supply a new clause
instance with a collection of aspetasses a material to lbmoked up
has to conform to.

30

The aspect clause class

5 Tools In an Environment

This chapter presents the tool aedvironment cluster. The tool cluster offers seveladses
for building tools. Theseclassesare by far the most matusdasses othe frameworksince
tools arebuilt from a regulastructure thatan be captured byell-known patterns. The envi-
ronment cluster contains a single class of wiicly a single instance @eated at runtime: the
environment. It is the first object created during startup time.

5.1 Overview

The tool and environment clustéfqolClusterandEnvCluste)y comprise thelasses depicted

in figure 5-1. Theenvironment cluster offers a single claBsivironment which isused to
startup theoverall system ithefirst place. The tool cluster comprises several subtrees based
each one dedicated to thmplementation of a specifipart of anoverall tool. The subclass
trees are th&ool, FPart, IPart andUPart class tree.

Environment

NameClause —ToolnameClause
Clause < FPartldClause
IdClause <IPartIdClause

MaterialldClause

ComplexTool —SimpleTextBrowser
TmObject Tool Lister

SimpleTextEditor

SimpleTextViewer

CompositeFp ——SimpleTextBrowserFp
ListerFp

SimpleTextEditorFp
SimpleTextViewerFp

Compositelp —StmpleTextBrowserlp
Listerlp

SimpleTextEditorlp

SimpleTextViewerlp
SimpleTextBrowserUp

ListerUp

SimpleTextEditorUp
SimpleTextViewerUp

FPart

Material

IPart

UPart

AAN

Figure 5-1: The environment cluster is shownthe top and the tool cluster
is shown on the right. On the left are the superclasses from the other clusters.

32 Tools — rationale and structure

We will first discusghe overall structure of a tool, thelea of tool composition from compo-
nents, the structure of a single comporaerd thebasictools provided by the framework. Af-
ter this we will introduce the environment and show how it handles tools and materials.

5.2 Tools — rationale and structure

A tool is used to perforrmvork onmaterials. It presents materials in a graphisarinterface
and lets users manipulate them. A tootasinected with anaterial viaaspectclassesvhich
confinethe possible actions asermight perform on a materiagkach tool has &andling and
state ofits ownwhich make ughe character of the tool. &/ designedools focus on aingle
task and don't try to be overly general.

A tool exhibits aregular structure. It ibuilt from tool componentswhich are organized in a
single rooted component tree. Each comporensists of threelifferent objectscalled the
functionalpart, interactionpartand user interfacpart of the component. A toohay be sim-

ple, consisting of a single tool component, or complex, consisting of several tool components.

A tool component is designed to serve a cenali-definedtask, forexample topresent a
listable materialisually and to let users select fraitme visual presentation. A tool component
may either be a simple eomposite tool component. A simple tool component needshey
tool components to implement its task, that is it works stand-alone.

A composite tool componemelies onfurther tool components tonplementits task. This
leads tothe single rooted tool component tmentioned above. The browser tool consists of
a supervisingorowser tool component wittwo subordinate tool components, a listeol
component and a simple text editor tool component.

Eachpart of a toolcomponent serves a differgmirpose. The fustional partimplements the
functionality offered bythe tool component, the interactipart definesthe handling of the
tool and the useinterfacepart createend managethe widgets that are used tealize the
user interface for the interaction part.

The closure of a tool is realized by a single obpatiedthe tool objectThis tool object is the

first object ofthe overall tool to becreated. licomprisesall relevantdata about the tool and
creates thdirst tool component iturn. This tool component becomése root tool compo-

nent in case of a complex tool. It creates subordinate tool components according to its needs.

Figures 5-2 and 5-3 show a simple and a complex tool respectively.

Figure 5-2: The object diagram dhe lister tool. The tool object creates the
functional part, theinteractionpart and the usemterfacepart inthis order. The
three parts form the one (and only) tool component of the lister tool.

Tools in an Environment 33

SimpleText
Browser

SimpeText
BrowserFp

SimpleText
BrowserUp

SimpleText
Browserlp

/W
Editorlp
ListerUp M/ﬁb

Figure 5-3: The object diagram of a complewol, here the siple text
browser tool. It is built from the lister and simple text editor tool components.

SimpleText
EditorFp

SimpleText
EditorUp

ListerFp

The framework classeool, FPart, IPart and UPart represent the central abstractions and
superclasses of thelasses irthe figures 5-3 and 5-4. To easemplementation of complex
tools, intermediate subclasses bol, FPart and IPart were introducedgalled ComplexToaql
CompositeFmndCompositelprespectively. This ianother incarnation ahe Composite pat-
tern [GHJV95].

— 7l

/ CompIexToon

(\

— — |

/ Composite\/ / Composite\/

<\ Ip p—(\ Foo

\¢(“/

\/\\ /—\L/

-
/ UPart / IPart
C
-
L7
L7 -
Figure 5-4: The framework classefor tools and tool components. The

classeslPart, FPart and Tool have a composite subclasalled Compositelp
CompositeF@ndComplexToaolLeaf classes are not shown.

34 Tools — rationale and structure

The next section presents the structure of a single tool companérhe composition strat-
egy of a whole tool from its sibly severatomponents. Before doirgp, however, wéave

to discuss clas$ool itself. Instances of (subclassef classTool serve as a closure of the
overall tool fromthe environment’s point of viewlool components or thdifferentparts of a
component aréidden behindhe tool object. Thus, it serves as a closure to encapsulate the
implementation of a given tool.

ClassTool offerstwo class methods and several instance methods. The class matiteds
alClass andtoolNameoffer somedata about the tookhich are used by thelause classes
MaterialldClauseandToolnameClauseT he instance methods are listed in the following:

fPart, fPart: Getandset the @inctionalpart of the single oroot toolcomponent of
the overall tool.

iPart, iPart: Getandset the interactiopart of the single oroot tool component
of the overall tool.

uPart, uPart: Getandset the usemnterfacepart of the single oroot tool compo-
nent of the overall tool.

material, material: Getandset the main material ofthe overall tool (assuming thahere
is a single exposed material of this kind).

tooIName, toolName: Get and set the toolhame instance wise. If no particular ta@me
was given, the name defined in the class metboliNameis returned.

initMainComponent: This methodcreates instancesom the three parametemshich are

iPart: passed inThe parameters have to bencretesubclasses ofPart,

fPart: IPart andFPart. First the functionapart,then the interactiopart and
finally the userinterfacepart is created. Togethéney formthe first
(and possibly only) tool component of the tool.

initUiClosure This method is directlgalled fromthe otherwise void methaditial-

ize This operation creates the user interface elementslodliavidget
and a mainwindowvidget. Thesdwo widgets formthe root of the
widget tree thafinally presents the usenterface ofthe whole tool.
Essentially, they look like a window. They have bé&estoredoutinto
the toolclass so that composition of tool componentsascompro-
mised bylayout problems othe userinterfaceparts of a component
(see section about complex tools).

realize After initialization the tool isstill invisible. Thismethod realizes the
shell and mainwindow widget and thus makes it appear on the screen.

shellWidget, Getandset theshellwidget, thefirst widget that provideghe root of

shellWidget: the whole widget tree for the user interface of the tool.

mainWidget, Get and set the min window widget. This widgetdefinesthe main

mainWidget: window of the user interface of the tool.

windowClose: This method iscalled whenevethe userdouble-clicks onthe close

clientData: button provided by theystem menu ahe nainwindow. It is used to

callData: gracefully close down the tool.

The mostbasic tool specializethe initialize operation to calinitMainComponent:iPart:fPart:
to create its main tool component. In case of the lister tool, the following lines were written for
methodLister>>initialize:

Tools in an Environment 35

initialize
super initialize.
self initMainComponent: ListerUp iPart: Listerlp fPart: ListerFp.

5.3 Tool components

As discussed, a tool is built froome or more tool components. Each tool component focuses
on a single well-defined task. It implemetite tool statendhandlingfor thistask. It islinked

to its materialvia the corresponding aspect classes. The asfasses confinghe capabilities

of the tool component and thbaslp it to focus on itsask.Figure5-5 shows thearticipating
classes. This might be called the horizontal structure of a tool while tool composition discussed
in the next section deals with the vertical structure.

/\/\\ /\/\\ /\/\\ /\/\\ /\/\\
UPart IPart FPart AspectClass Material
1 1 n 1 n n 1
o—=(O—=(b— "
A) A) A __J A) A)
“ N “ ~ N
Figure 5-5: The horizontal use relationshipgthin a tool component. The

relationship between aspectclass and a material is left unspecifig@noted by
an association without further specifying its semantics).

The different components in figure 5-5 have been introduced to serve different purposes.

5.3.1 Functional part of a tool component

The functionalpart (fpart or fp for short) of a to@omponentmplementsthe tool compo-
nent'sstateand its functionality, that is at you can use the tool component for. linked

with its materials via adequate aspect classes which confine its possible functionality. An fp just
uses its materials, and no observatiothm sense of the change/updatechanisnmexists. If

more than one tool is twork on amaterial,other updatenechanismshan the Observer pat-

tern have to be used, for example those discussed in [RZ95, Rie95a].

The framework superclass alf fparts of a tool component calledFPart. It hastheinstance
method initialize which should be specialized by subclasses. A corresponding class method new
calls this initialization method.

5.3.2 Interaction part of a tool component

The interactiorpart (ipart of ip for short) of a to@omponent realizes thendling of atool
component. To do so, lilas astate ofits ownwhich is distinct fronthe state of théunctional
part. Itfurthermore presents both theaterial’'sstateand the tool componentsate as pro-
vided bythe component’suinctionalpart in a usemterface. This it just a “conceptual” user
interface since the actual presentation throughiosaface elements like widgets is left to the
user interface part discussed below.

An interactionpart sits ontop of a tinctionalpart. The ip directly makes use tfie fp. Fur-
thermore it observes the fp, so thaingnediately informeadboutchanges in thenaterial’s or
fp’s state. Theapplication ofthe Observer pattern [GHJV95] introduces a tiglu@upling
than a regular use relationship. Therefore, interaqiems and dnctionalparts as themain
participants in a tool component are often designed hand in hand.

A functional part may have one or more interaction parts each one dealing with a passible
on the tool. Usually, there anly one interactiompart foreach functionapart. All tool compo-
nents presented in this report have just one interaction part working on its functional part.

36 Tool components

Any interaction part should be a subclas#Rairt, which isthe frameworksupplied superclass.
It offers the following class and instance methods:

fPartClass This class methodeturns the dnctionalpart class, the currennter-
action part class has been written for.

new: This isthe usualnew class methodvhich takes an instantiated fpart
and forwards it tanitialize:.

fPart This instance method returns the fpart instance the ip is working on.

initialize This instance method initializes the interaction part.

initialize: This instance methakes a fparinstance as its parametenitializes

itself viainitialize and adds itself as a dependent to its fpart.

5.3.3 User interface part of a tool component

A user interfacepart (upart or up) realizesspecificuser interfacémplementation via window
system widgets. It sits diop of an ipandimplements aoncrete useinterface that lets users
perceive and handtbe tool component agalized bythe interactiorpart. The upartobserves
its ip andimmediately realizethe changes of the interactipart aschanges in the concrete
user interface. Changestine userinterfacethrough user interaction in turn aremediately
forwarded to the interaction part.

An upart’s role is more technical than a conceptuathe. Itimplements a specifiaserinter-
face for a given platform using the available graphisak interface elementsalled widgets in
Motif and IBM Smalltalk as well. It catake advantage gdeculiar dependencies between cer-
tain widgets by having an overview of all widgets needed for its implementation.

An upart decouples thateractionpartfully from any system specifigser interface behavior.
It is ourhope that we donhave tocode usemterfaceparts byhand inthe near futureSince
it is separatedrom anyconceptuapartdealing withthe tool component’state,functionality
handling and presentation, the upart is the part to address with user interface builders.

The clasdJPart is the superclass of all user interface parts and offers the following methods:

iPartClass This class methodeturns the interactiopart class thisuserinterface
part class has been written for.

new:with: This is acreation class methashhich takes a widget as ifgst and an
ipart instance as its second parameter and forwards themébze:.

iPart This instance methotkturns the ipart the upairistance is working
on.

initialize Instance initialization method.

initialize:with: This instance methothkes a widget as ife#rst and a ipart as its sec-

ond parameter. The widget is used as the parent widgait wadgets

created bythis upart. The ipart is the ipart the upgsing to present
visually. Furthermore, this method introducesupart as alependent
to the ipart.

createSubUpFor: This instance methodreates a subordinate updrt the context of
tool composition, see below) depending on an ipart passed in as a pa-
rameter. Several user interfaggecific considerations have to be car-
ried out and the new upart has to be chosen on an instamstance
level based on the given ipart.

Tools in an Environment 37

update:from: This method dispatcheke events thapartreceives from its ipart. In
the superclas®nly the wish for a new subordinatepart is expected
and dispatched.

create This method actuallgreates the widgets for the user interface. It fur-
thermore sets theootWidget so thatmanageand unmanagework
correctly.

manage, unmanage Thesetwo messagemanageandunmanagehe whole usemnterface
created by the upart according to the rules set up by Maotif.

parentWidget This methodreturns the parent widget passed into ithigalization
method in the first place. Usually, it is a form widget.

rootWidget Returns theoot widget for all widgets of the upart. It is created by
the upart itself.

Those who know prior work omplementingthe Tools and Materials Metaphoilvwonder
what has happened tbe socalled interactiortypes. Interaction types are wrappéasses for
widgets. Theyare theclasses of your averageoss platform windowsystem library. In our
prior framework interaction partsplementedhe useiinterface itself. Theworkedwith in-
teraction type classes only and thus became portable.

First, interaction types aren’t needed anymeiggelBM Smalltalk provides a MotiAPI for
any graphicaluser interface itSmalltalk runs on anywaySecond, writing arossplatform
library is really muchwork since so manplatform specifics and peculiarities have totékeen
into account. It was not feasible trying to reimplement it in Smalltalk.

We think that user interfageartsshould befully handled on a tool level, that is a graphical
user interface builder.

Recent work omnteraction forms as highégvel abstractions of interaction types hast been
addressed.

5.4 Tool composition

Tools, ashas been pointed outyay consist of several tool components. These tool compo-
nents are organizeuerarchically in &ree like structure, so that a tool componeaty have
several subordinate tool components. Since each tool component focuseswontask, any
superordinate provides the context of interpretation of the subordinate tool comp®hents.
superordinate tool componeglledthe context tool component for its subcomponemdss

the subordinate components itoplementits task. Thereby, an efficient way of breaking up
complex tasks into smaller tasks as well as reusing classes and components is achieved.

Structurally speaking, we fadke Composite pattern once moféis is made explicit by the
classe€ComplexToglCompositeFmndCompositelpvhich are the superclasses faramplex
tool and the iparts and fparts oftamplex toolcomponent. We talk abouta@mplex tool,
since itdoesn’'thave a compositeee like structure, but of composite ipaatsd fpartssince
these objects are organized in a compds#e. Theclass diagram was already showrfigure
5-4.

Every composite ipart or fpart class should be subclass of €itdmepositelpor CompositeFp

because these classes prouide functionality of maintaining a list ofubordinate iparts or

fparts. Reusing these classes leads to a dual class and object hierarchy of iparts and fparts. User
interface parts have not been provided wioapositeUglass since whope to tackle upart
classedully with tools. Furthermore, upartsuallydon’t need to knowaboutembedding or

38 Tool composition

subordinate upartsince no relationshipther thancreating and passing widgets should exist
here.

5.4.1 Composite functional parts

The logic of creating andhaintaining toolcomponent with subtool componemationships
resides at the fpart of a tool component. It decides whetheretde or delete subordinate
components, it makes sense of themebpedding and interpreting thefrherefore, an fpart
knows thefull interface ofall subordinate fparts. In additioall subordinate fparts are main-
tained in a collection of sub fparts provided by the intermediate supe@dagsositeFp This
class offers the following functionality in addition to the one offere&Part:

addSubFp: A new, alreadycreated, sub fpart is added to theernal collection of
sub fparts. Furthermore, the current fpart is added as a dependent of
the subordinate fpart and an event is issudiich denotes that a new
fpart has been redered.

removeSubFp: A subordinate fpart is removed from the collection, the current fpart is
removed as a dependent from it and an event is issued that denotes
that a subordinate fpart has been removed.

subFp For its communication witithe ipart, each fpart offerthis access
method to the last new fpart. It is usetlen creating or deleting the
right ipart for a new fpart.

createSubFps This method ighe place were tgut thecreation code for new fparts
that are to be build right from the beginning with the overall tool.

subFpCol Returns a collection containing all the subordinate fparts.

initialize Initializes the composite fpart.

The dynamics ofthe creation and deletion procedures are discussed below. If an fpart creates

or removes a subordinate fpart, it has to tbalappropriate metho@sldSubFp:andremove-
SubFp:afterwards.

5.4.2 Composite interaction parts

The interaction parts are created and deleted according to the creatioriediod dé their
fparts. Subordinate iparts are hold in a collection offere€dynpositelp If an ipart needs
access to the subordinate ipartanay storeadditional named referencehough this rmght

be sensible in case of complicated user interfaces, most dataand controfflow is handled

on the fpart side. Thusinly a smallnumber of iparts should directly use their subordinate
iparts.

The instance methods offered @gmpositelpare similar to those offered IompositeFp

addSublp: A freshly created subordinate ipartpsit into thesub ipart collection
and an event is issuedthich denotes that a new ipart hasen regis-
tered.

removeSubFp: An old ipart is removed and an event is issued that detihatea sub-
ordinate fpart has been removed.

sublp For the communication with itsupart, each ipart offers an access
method to the last new ipart. It is usetlen creating or deleting an
ipart.

createSublpFor: This methodcreates a new subordinate ipart for tieen fpart. It

Tools in an Environment 39

uses arFPartldClauseinstance to d®o. The rationale for the tech-
nigue has been discussed in chapter 3.

update:from: This method dispatcheke incomingevents fronthe composite fpart
to its appropriate method. might catch acEvSubFpAddeavhich it
dispatches tareateSublpFor:

sublpCaol: Returns the internal collection of all subordinate iparts.
initialize Initializes the composite fpart.

The dynamics ofcreating and deleting a subtool component maw be discussedising the
SimpleTextBrowseas an example of a complexol. Giventhat the fpart of the siphe text
browser has been created, the tool cabsteSubFpsn it:
createSubFps
super createSubFps.
listerFp := ListerFp new.
self addSubFp: listerFp.

editorFp := SimpleTextEditorFp new.
self addSubFp: editorFp.

This method subsequently creates the subordinate fparts and adds to its collection of sub fparts
by calling addSubFp: This operation adds the new fpart to emternal collection, registers
itself as a dependent of the new fpart and announces an event for the new fpart.

This event is received lilie simple text browser ipart and gets dispatchezmt@¢ateSublpFor:

which creates the appropriate sub ipagig latecreation. Sincéhe new ipart is added to the
collection of subordinate iparts, the same creation procedure takes place between the upart and
the ipart.

The distinction between interactigrarts and dnctional parts,their clear separation of con-
cerns, their focus on singigell definedtasks andeasy embedding make them a powerful
means for reuse.

5.4.3 Composite user interface parts

Thoughwell thoughtout classes adhering tihe given guidelines should be easyrsuse we
haven't yet addressed, however, one of rtiegor obstacles for reusing whole tool compo-
nents: the reuse of user interface parts.

More precisely, we're less interestedrguse of user interfageartssince they should bsol
generated, but more immposability. Composability means that we easilyput uparts in a
composite tree withouteingscrewed up by technical problehse to widget layout and wid-
get composition.

The discussion of tool components and thusier interfaceart has, however, prepared the
scene forsuccessfully tackling this problem. It can tweercome by adhering tthhree simple
guidelines:

1. Never let a user interfagart create avindow itself, unless you're versure that your
upart will never be reused.

2. Make no expectations about yambeddingwidget butonly assume it to be a general
form widget.

3. Use the object bound tonames of a tootomponent tayive names tdhe widgets, so
that a widget from a reusegbartcan have a different layout théme same widgefrom
another instance of this upart.

40 Available tools

The first guideline is successfully realized Hye tool classwhich factors out the window
creation procedure and provides tgart of theroot tool component with amainwindow
widget.

The secondyuideline canonly beensured by carryingut aclean design. No assumptions
about arembeddingwidget context should beade unlessnereally wants to constrain the
possibility of reuse for some good reason.

The thirdguideline is lesgmportant on thg@rogramming level, sinceidgets can bedentified
as objects very welHowever, if tools are used toanipulateuser interfacgarts,very often
the only identification ofwidgets is by name. These names should be different, ethenwid-
get is created by an instance of the same class.

5.5 Available tools

The framework offers some genetabls, mainly for demonstration purposes. It comprises the
tool classed.ister, SimpleTextEditqgr SimpleTextVieweand SimpleTextBrowserThe only
tool which is sensiblyeusable ighe lister tool, sincethe other tools arbased ortoo simple
aspect classes representing materials only as strings.

The structure of théster tool has been depicted in figuse2 and its embedding and reuse
within a complex tool has been depicted in figh#®. We therefore poirdut tothediscussion
of tool composition in the previous subsections and go on the present the environment class.

5.6 The environment

The EnvClustey called the environment cluster from now, offers a single clasghat isEnvi-
ronment It is thefirst class which is instantiated during syststartup. @ly a singleinstance
will be created which is the root of the object graph that emerges when the system is initialized.

The purpose ofhis first object is tastartup thewhole system. This usually means connecting
the system taall required external servicesylilding upthe deskto@nd starting andhanaging
tools. Tools ardinked to external servicesnly by way ofthe environment whichcontrols
which servicesare made available to whictools andwhich servicerepresentatives they re-
ceive.Here, however, we Wonly focus on tool startufrom adesktopsince this ighe only
functionality that has been implemented so far.

7N

—

/ Envwonment

— / T/ \\ N
TmCIass

Tool Material
Manager
™~ ™~ ™~
.\ 7 .\ 7 .\ 7
Figure 5-6: The environment cluster and its relationships to other classes.

Currently the environment uses a simple lister tool to show all possditewithin a system to
the userThis will be replaced in future versions byf@l blown desktop ofits own or the inte-

Tools in an Environment 41

gration with MS-Windows. The environment therefore receives notificatidhe iiser wants
to startup a toolClassEnvironmentrelies on extensive initializations. This comprites fol-
lowing attributes of the class.

toolCol

toolClassCol

materialCol

materialClassCol

This collection comprises all currently activatedls in thelocal envi-
ronment.

This collections containall instantiabletools classes. Only for these
tools icons are represented on the desktop or listed in the tool menu of
a material icon.

This collection comprises all currently activated materials that are used
by tools. This is a preliminary implementation which beplaced in
future versions if adequate material supply services become available.

This collections containall material classes dhe system that can be
instantiated usinglassManager This is a single instance of class
TmClassManagewhich isused to retrieve classes basedspecifica-
tions (see chapter 3).

The corresponding initialization methods relating to desktop initialization are listed below:

initDesktop

initialize
initMaterialClassCol
materialClassCol
initMaterialCol
materialCol
initToolClassCol

toolClassCol
initToolCol
toolCol

Initializes the desktop.

Calls subsequently all required initialization methods.

Collects all concrete material classes using the facilitidsrddbject
Returns the corresponding instance variable.

Creates a collection fonaterialCol

Returns the corresponding instance variable.

Collects all concrete toolclasses usinghe methodgetConcrete-
Classes:byClausef classTmObjectstarting with clas3ool.

Returns the corresponding instance variable.
Creates a collection fdoolCol.
Returns the corresponding instance variable.

For the creation and management of tools the following operations are used.

addTool:

createTool:

createToolFor:

removeTool:

Receives a tool, puts it into the tool collection and realizes it causing it
to appear on the desktop.

Receives a tool class and instantiateSThe new tool is passed to
addTool:

Receives a material class, determittes default tooklassfor it and
creates a tool for the material usicrgateTool:

Removes a tool from the internal collections.

The environment object receives notificatiohough itsupdate:from:methodwhich indicate
whether a new tool is to be created or a tool is to be removed.

Further issues on the environment object can be found in [Rie95a, RZ95].

42

The environment

6 The Aspect Browser

The interface of a material classisfined byone or more aspect classes. The interface that an
aspectclass defines can itself lmmmposed of one or more aspect classeqréigramming
languages like C++ that offer tiple inheritancethe resulting aspeatlasstreecan beimple-
mented using inheritand&S90]. In Smalltalk, which only allows single inheritance, we have
to find a way to imitate multiple inheritance.

In this chapter we descriliero pragmatic solutions to the itiple inheritance problem. The
first solution makes use of toslpport toaccomplishthe task. Thalesign andhe usage of
this tool, the so-called Aspect Browserexplained. A second solutiowhich wasnot used in

the framework but could be of interest,disscribed at the end of the chapter. It presents a
simple implementation of method dispatching neddeanutiple inheritance. Athird solution

to this problem, using wrapper classes, has shortly been described in chapter 4.

6.1 Emulating multiple inheritance using tool support

Aspect classesormally don’t define any behavior ahe material classes, whicare derived

from them. Theyonly definetheir interfaces. Therefore, it would beafficient if we found an-
otherway to makesure that thenaterial classes havbe interface that is given bghe aspect
classes whiclthe material has assigned. This lead to a quite pragmatic solutibwe wiultiple

inhertance problem.

In IBM Smalltalk, as irotherSmalltalk systemanethods can bgrouped into categories. Our
idea was to use method categoriestl@ protocols of the particular aspects, one category for
each aspect. We dorgive the material classethe interfaces ofthe aspectlasseshrough
inheritanceput provide tookupport tocopy the methods of the aspeldsses tahe material
classes.

With this approach, the defautehavior of araspectclass carstill be implemented asegular
methods. Thémplementation Wl be copied to thematerial class. The programmertbé ma-
terial class can textuallgverwrite the copied methods, that is hesbe replacethe cefault
implementation of the methods with a material specific implementationsduree code of the
aspect methods acts only as a template for the implementation of the material classes.

The aspectlasses used in a systelon’t have to build a flastructure.They can alsduild
hierarchies of general and maieecificaspect classes. Thus, we needtipla inheritance not
only between material classes andsgbly severabspect classefut also between aspect
classes and several aspect superclasses.

We appliedthe Composite pattern [GHJV95] to addr#ss problem. In hierarchies alspect
classes, messagdsn’'t have to be dispatched tbe right superclas§ince methods of aspect
classes are just copied to the material classes, this simply has to be done for all aspect classes ir

44 Emulating multiple inheritance using tool support

the hierarchy. The material clagsally builds a flat view othe interfaces othe aspectlasses
in the hierarchy (see figure 6-2).

Aspect class

addAspectClass()

hasAspectSuperclass()
removeAspectClass()

/ Aspect
(/
~ \
! N -
: - AspectSuperclasses
SlmpIIeAspect CompositeAspect class
class
- addAspectClass()
addToMaterial()
hasAspectSuperclass()
removeAspectClass()
“ — =7
/ Simple \/ /' Composite
C Aspect
(N Aspect \ - \
\ = \ -7
Figure 6-1: Structure for managing composite aspect classes.

Figure6-1 shows aimplified diagram ofour application ofthe Composite pattern. Thygay
metaclass objects visualize that the methods to handle the composite strucilifeaated in
the metaclass interface. This static structure is used because our composite dealstuvith
aspect classes, not instances of aspect classes.

Aspect classeare subclasses either &mpleAspecor of CompositeAspeciThe classeés-
pect SimpleAspecand CompositeAspedtself are not counted as asp@tasses. Their pur-
pose is to structure the aspetasses and to provide common functionafity all aspect
classes. The Aspect Browdenl, which is described ithe next chapter, usesveral methods

of their metaclass interface to organibe aspectlasses and assign them to material classes.
The public methods of these classes are:

addToMaterial: Adds the aspect to tiggven material class. Copied methods of the
aspecitclass to this material. The invereperationremoveAspectis
implemented in the claddaterial.

addAspectClass: Adds thegiven aspectclass tothe list of aspect superclasses. For
simple aspect classed| methods related to aspect superclasses don’t
do anything.

removeAspectClass: Removes the given aspect from the list of aspect superclasses.
aspectSuperclasses Returns a list of all direct aspect superclasses.
allAspectSuperclasseReturns a list of all aspect superclasses in the hierarchy.

The Aspect Browser 45

hasAspectSuperclass:Returns true, if thgiven aspectclass ispart of thelist of all aspect
superclasses.

isSimple Returns true, if the aspect class is a subclaSsngple Aspecandfalse
if it is a subclass c€ompositeAspecAlthough the Composite pattern
normally makes this kind dfype tests superfluous, there wemme
situations where this methaignificantly simplifiedthe implementa-
tion.

Aspect classesyhich are only the subclasses ddimpleAspecand CompositeAspectontain
exactlyone method category with tteame name a$e classThis category containall the
methods, that the aspect provides. Neither the user of the framework, nor the fraitsalfork
has ever tareateinstances of aspect classes. Their metlavd®only copied by the Aspect
Browser but nevecalled directly. @ly their class interface inherited fro8impleAspecor
CompositeAspeas usedSo,their main purpose is to serve as containers for the aspect meth-
ods.

The clasMaterial maintains a list ofhe aspectlasses thaareassigned to it. Thést is con-
tained in a dictionary ithe class variabléAspects The dictionary has an entry withe actual
list of aspectclassedor every subclass dlaterial. The Aspect Browser uses thalowing

class methods of the class Material to manage the list of aspects classes:

addAspectClass: Adds the given aspect class to the list of aspects.

removeAspectClass: Removes thgjiven aspeciclass fromthe list, but only if this aspect
class isnot an aspectuperclass of aather aspectlass inthe list. If
the aspectlass can be removethe private methodemoveAspect-
Methods:is calledafterwardswhich deletesall methods for this as-
pect from the material class.

aspectClasses: Returns the list of aspect classes.

hasAspect: Returns true if thgivenaspectlass is a member thelist of aspects
and false otherwise.

hasAspectCategory: Returns true, if thenaterial class has a methedtegory with the
name ofthe given aspect classThis means, to a certagxtent, that
the aspects methods are contained in the material class.

These class methods could be usehually, ifthe Aspect Browser woulfhil to handle the
list correctly for some reason.

6.2 The design of the Aspect Browser

Chapter 4explainedour solution to the mitiple inheritance problem withspectclasses and
the need for tool support resulting from this solution.

To follow the various browsers in th®malltalk environment, we namezlr tool Aspect
Browser. The Aspect Browser provides the following basic functionality:

* Creation and editing functionality for aspect classes (simple and composite aspects).

» Assignment ofaspectclasses to material classes. Removasgectclasses from material
classes.

* Providing consistency between material classes and aspect classes.

46 The design of the Aspect Browser

» Editing functionalityfor methods of thenaterial classesfter assigningaspectclasses to
the material class.

The main disadvantage of our approach to the multiple inheritance problem is, ttéficuls

to preserve consistency betweabe material classes arttie aspectlasses assigned to them.
The implementor of a material class is freeatld methods to thenaterial, whichare not part
of an aspect class. He could also delete aspect mdtooushe material class instead of im-
plementing it. The Aspect Browser has to provide supposyiochronizingaspectlasses and
material classes, after changing the interface of one of them.

Another important function othe Aspect Browser is thassignment ofspectclasses to a

material class and the removal of them. As explained in section 6.1, assigning aclaspe¢ot

a material class means copying all the methodkeofispectlass with their enclosingategory

to the material class. In the case of a composite aspect class, this process has to be repeated for
all aspect superclasses. Since the aspect superclassiesneaelves be compositepasts,this

IS a recursive process.

— 7 — 7
—— . / Simple / Simple
/ - — Aspect 1 Aspeth
/ Material xy \ \
/" Interface of Composite Aspect 1()’
/ Interface of Simple Aspect 1()~
(Interface of Simple Aspect 2()
N ‘
Ny \ / Composﬁe
\ / Aspect 1
— ~ _ ~ \
\ ~ \ —_
N / _— -
Figure 6-2: Assigning a composite aspect class to a material class.

After assigning a composite aspect class to a material tiassaterial class builds a flat view
of theinterfaces othe composite aspect structure. The composite aspect strucligueent-

2 shows thdogical inheritancestructure, not theeal structurebased on the Composite pat-
tern.

The removal of araspeciclass from a material class simply means deledihghe methods
from the material class, that have the same selector as a method of the aspect class.

The class and applicatidimowsers in the IBMSmalltalk environmenare implemented in a
class hierarchy witlthe root classEtWindow We could have derivedur Aspect Browser
from one of theclasses in this hierarchy, sinttee Aspect Browsehnas somesimilarities with
the Smalltalk browsers. One of our ideas for future work is to build the Aspect Browser on top
of the Tools and Materials framework. If we hatplementedhe Aspect Browseusing the
Smalltalkbrowser classes, a later switchaor framework would have been hindered. There-
for, we implementedhe first version ofthe Aspect Browser in a straightforwandy and
copied some useful code fraime Smalltalkbrowser classes. We couldt develop the Aspect
Browser directly on the framework, because the Aspect Browser and the frantewerkeen
developed at theame time. Developing an application on a frameworkgtiatuns through
significant changes is a daunting task.

A big part of the Aspect Browsefsnctionality is contained ithe class methods dhe classes
Aspect SimpleAspectCompositeAspecind Material. The copying of methods between as-
pectclasses and material classes and their synchronization is implemetitegerclasses. The
user interface ofhe Aspect Browser isnplemented in a clas&spectBrowserThe classAs-

The Aspect Browser a7

pectBrowselis contained in a IBMomalltalk application othe same nam#éogetherwith sev-
eral prompter classes for the application specific dialogs.
6.3 Using the Aspect Browser

This chaptergives an introduction to usirthe Aspect Browser. kxplainsthe purpose of the
widgets in the Aspect Browser window and the various menu entries.

= Aspect Browser v~
File Edit Aspect Method Help

Material classes: Aspects: Library Aspects:
Aspect... Indexable Indexable
Document Listable
SimpleDocument SimpleBrowsable
Folder Listable
FPart... SimpleEditable
IPart... simpleEditable
SimpleViewable
Tool...
UPart...

{2 Material aspect methods @ Library aspect methods

add: at: index put: aListable il

asCollection self subclassResponsibility -
at.

atput
collect;
do:

remove.
select: *

«[| -

Figure 6-3: The Aspect Browser wadow.

6.3.1 Elements of the Aspect Browser window

The Aspect Browser window contaissveral list boxes and an edit fiekhe list boxes in the
upperhalf of the window show thenaterial classes, their assigreespectlasses anthe avail-
able libraryaspect classestibrary aspectclassesare those aspectasses whiclthe user can
assign to material classes.

With thetwo (arrow)buttons between tHest boxes, aspeaiasses can be added tonaterial
class or removed from. The list box andthe editfield in the lowerhalf of the window are
used to edit the methods of the aspect classeslisStH®x shows either the methods of the
library aspectclasses othe methods of the aspesasses assigned tioe material classes, de-
pending orthe setting of the radio buttons in theddle ofthe window. In the edit field, the
method source codean be edited. It behavesnilar to the source code editor in tlotasses
and applications browser of the Smalltalk environment.

The list boxes showinghe material classes aritie aspectlassesare higarchical list boxes.
They visualizethe tree structure of theaterial class hierarchy arttie aspect hrarchy
throughindention. Collapsed entries in thdst boxesare marked with thredots ‘...". They
can be expanded and collapsed by double-clicking it.

48 Using the Aspect Browser

The editfield and most of thdist boxes haveontext mens, which can bepened with the
right mouse button.

6.3.2 Creating and deleting library aspect classes

New aspectlasses can bereatedrom the Aspecimenu inthe menubar or the contexinenu
of the Library Aspectslist box. There are separateenu entriedor creating sirple aspect
classes and compos#spect classefor sinple aspect classes, tloaly informationthe user
has to enter ithename ofthe new aspect class. Figel shows thelialog, which isopened
for the creation of a composite aspect class.

= Mew Composite Aspect

Name: | Browsable]| OK

Cancel

Aspects: MNew aspect:

Indexable Listable
SimpleBrowsable SimpleEditable
SimpleViewable

Figure 6-4: Dialog for the creation of new composite aspect classes.

Here, the usehas to specify, which dhelist of availableaspectclasses should e aspect
superclasses for the new composite aspect clais.tivé two (arrow)buttons, aspeatlasses
can be added to or removed from the list of aspect superclasses.

The creation of a simple or a composite asptds results inhe creation of a new aspect
class, which is derived from the corresponding ciasgpleAspeadbr CompositeAspect

Aspect classes can be deleted witbmenu entry ‘Delete’ fronthe Aspecimenu orthe con-
text menu othelibrary aspectdist box. The Aspect Browser tedtsst, if the aspectlassthat

is going to be deleted isart of acomposite aspect class. If it ispart, amessage is dis-
played, stating thahe composite aspeclass has to be deleted first. A following dialog pres-
ents alist of all composite aspect classes,which the aspect classyhich is to bedeleted,
takes part.

6.3.3 Editing methods of aspect and material classes

The lowerhalf of the Aspect Browser window is used to edit the methods of aspect and mate-
rial classesThe two radio buttons in theniddle ofthe window serve to switch thasible
methods, either the methods of the selected aspect ofategial class othe selectedibrary
aspect class.

The methods list box and the editor basically function the same way asailmeierparts in the
Smalltalkbrowsers. The contexenu ofthe methoddist box has menu entridsr inserting a

new method template in the editor and defetingthe selected method. The contex¢nu of

the editorfield corresponds to the one in tBenalltalk browsers, excepting thaissing ‘File

In’ option.

The Aspect Browser 49

6.3.4 Assigning aspect classes to material classes

Aspect classes can be assigned to material classesthsiteft arrow’ button between the
aspectdist boxes or withthe menu entry ‘Add to Material’ fronthe Aspecimenu orthe con-

text menu. With the assignment of an aspect class to a material class, a new method category is
createdwithin the material class anthe methods of the aspetassare copied intdhis cate-

gory. If theassignedaspeciclass is a compositspect classll the aspect superclasses are

also copied, if they are not already assigned to the material.

Removing amspectclass from a materiaborks similar to the assignment. The ‘rigrarrow’
button or the Menu entry ‘Remove from Material’ can be used to remove an aspect class.

6.3.5 Updating/synchronizing aspect classes

Aspects can be updatedtwo directions. After a change toliarary aspect classll material
classes, that have thaspect assigned, can ipedated. After &hange to an aspect of a mate-
rial class, the corresponding library aspect class can be adapted.

= Update Materials

Aspect: Listable (0] 4

Select the material classes,

wou want to update.

Affected material classes:

‘Testhaterial Select all

Figure 6-5: Dialog for the update of the material classes

Material classes can be synchronized with a chahigealy aspeciclass withthe menu entry
‘Update Materials’ from the Aspect menu or the context menu.

Figure6-5 shows thalialog, which isopened for the update of tieaterial classes. THest
box displays allmaterial classes, which hatlee selected aspeclass assigned. Frothe list,
the user can select which material classes should be updated.

During theupdate of amaterial class, every additional methodtlo¢ library aspectclass is
copied to thamaterial class. Ithe currenimplementation, every methadissing inthe library
aspect class is also deleted from the material. Weamove that for the next release, dnese
it is too dangerous to just delete methods fromaterial classes. The Aspdgtowsershould
instead either inform the user in advance or just present a list of methudsthe usehas to
delete manually.

The update of &brary aspect class, based on a changed aspeanatexial class, can be in-
vokedusingthe menu entryUpdateLibrary Aspect’ either fromhe Aspecimenu orthe con-
text menu.

50 Using the Aspect Browser

= Update Library Aspect

The list boxes show the differences between the two aspects. QK
Select the differences, you want to update.

Cancel

Material TestMaterial: Library Aspect Indexable:

tasCollection

remove:;
Select all

Figure 6-6: Dialog for the update of an aspeclass, based on a changed
material class.

A dialog displays all the differences between the interface of the aspect in the material class and
the interface of thébrary aspect class. THested methodsire thosewhich areonly present in

that aspect. The user can seledtijch methods are to be updated. A selected method in the
material list box means, that tmsethod should be copied to thierary aspect class. A se-
lected method in thibrary aspectlist box means, that thimethod has to be deleted from the
library aspect class. This gives the user complete control over the process of updhatimgs
necessary for such sgnificantoperation as the change ofilarary aspect class. Updating a
library aspectclass also has an impact tre othermaterial classes, which have tlaispect

class assigned.

6.3.6 Menu reference

The menu reference givesshortexplanation to every menu entrytime menus ofthe Aspect
Browser. The reference is ordered after tienus inthe menubar. Themenu entries in the
contextmenusareimplicitly explained, since they buildsubset of thenenu entries accessible
from the menu bar.

6.3.6.1 Menu File

New, Open, Save, ReThese entriesall correspond to thesqually namedentries in the
vert, Save Image, SavBmalltalk browsers file menus. They have the same functionality.
Image As, Exit

Smalltalk:

Update Lists: Updates thdist of material classes arabspectclasses irthe Aspect
Browser window.This is necessary fbr example material classes are
created or deleted outside the Aspect Browser.

6.3.6.2 Menu Edit

Cut, Copy, Paste, These entriesall correspond to theequally namedentries in the
Execute, Display, In- Smalltalk browsers edit menus.

spect, Select All,

Search/Replace:

The Aspect Browser 51

6.3.6.3 Menu Aspect

New: Creates a new simple aspect class.

New Composite: Creates a new composite aspect class.

Delete: Deletes the selected library aspect class.

Add to Material: Adds the selectetibrary aspectclass tothe selectednaterial class.

Copies all the methods of the aspect class to the material class.

Remove from Mate- Removes the selected aspeletss fromthe material class. Deletes all
rial: the methods, which belong to this aspect from the material class.

Update Materials: Updates thematerials, which havéhe selectedibrary aspectclass
assigned, after a change to tlisary aspect class. The user can re-
strict the list of material classes, which are updated.

Update Library As- Updates thdibrary aspect class, based on the selected aspect of the
pect: selected material class.

6.3.6.4 Menu Method

New Method Tem-Replaces the content of the editor field with a method template.
plate:

Delete Method: Deletes the selected method.

6.3.6.5 Menu Help

About Aspect Displays the version and copyright information to the Aspect Browser.
Browser:

6.3.7 Implications of using the Aspect Browser

Materials and aspects are ordin&@wnalltalk classes thatould be edited with the standard
classes and applicatiobsowser of theéSmalltalk environment instead tife Aspect Browser.
The additional functionality ahe Aspect Browsas, that it maintainghelist of aspects in the
material classes artie compositiorstructure of aspeatlasses. It further helps to provide
consistency between material classes asplect classes. Thesegmnagementasks can’t be
performed with the standard browsers.

Several problems could arise whbe Aspect Browser is used @gombination with classes or
applications browsers to edit aspect or material classes. Some of the possible problems are:

If material classes are edited with the Smalltalk browsers:

* Methods of an aspect can be remofredh a material clas§.hat leaves thenaterial with
an uncompleted aspect.

» Additional methods could be entered that have the same selector as a method of an aspect.

This will lead to problems, ibne wants tassign this specifiaspect to thenaterial class.
However, the Aspect Browser informs the user of methods thatreegly inthe material
and thus can’t be copied.

If aspect classes are edited with the Smalltalk browsers:

* The danger of forgetting to update the material classes would be higher.

52 Method dispatch for multiple inheritance in Smalltalk

» A future version othe Aspect Browser W possibly include a version management for
aspect classes. The Aspect Browser wdhdde to actualizéhe version ofthe aspects
classes after making changes to them. Editiegaspectlasses witlthe Smalltalkbrows-
ers could corrupt the version management.

Despiteall these arguments against editing material asdectclasses withthe Smalltalk
browsers, this istill possible ifone is aware of thenplications andknows about théehavior
of the Aspect Browser.

6.4 Method dispatch for multiple inheritance in Smalltalk

During the development of the framework aeaminedanotherway to implement multiple
inheritance in Smalltalk. Thigpproach is described shorthgetherwith an application of the
same technique for the implementation of a generic wrapper class.

In order to realize multiple inheritance in Smalltalk we have to find a solution for the binding of
a message sent to an object to onthefobjects methods or to a method in one ofirther-

ited classes. One way to achieve this igge a dispatcher objegthich dispatches every mes-
sage it receives to one ofist of objects. The job athe dispatcher is thnd the objectwhich

can respond to the received message. If more then one tastbd objectgan respond, it
can’t be decideavhich method the sender wants to call and thusraar condition should be
raised.

— o — o — g
/ Superclass 1 / Superclass2 / Superclass 3
/ / /
< \ < \ < \
™~ ™~ ™~
\¢ P - \¢ — B P —
- -~
/" Dispatcher 7
< \
-
\ —
— |~ g
/" Subclass 7
< \
-
L7 -
Figure 6-7: Dispatcher class with its participant classes.

The subclass ithe mdtiple inheritance relationship should inherit frahe dispatcher class. A
message to an instancetbé subclass is passed tioe dispatcher, if theubclassloesn’t im-
plement a method that can be bounths message. The dispatcher cannfggemented using
the Facade patterescribed in [GHJV95]For our specific problemthe dispatcher can be
made more generidhis can be achieved by using a Smalltalk specific fealure.dispatcher
class overrideshe methodObject>>doesNotUnderstandto do thedispatching. The dis-
patcherclass is derived frorthe classObject so that it responds directly &l messagedhat
can be bound to a method in tingerface ofObject Any othermessages result indesNot-

The Aspect Browser 53

Understand:message. In the methodesNotUnderstandwe select the right receiver object
and forward the message to it.
MethodDispatcher>>doesNotUnderstand: aMessage
| targets selector |
selector := aMessage selector.
targets := superclassinstances select: [:superClass |
superClass respondsTo: selector].
targets size = 1 ifTrue: [
~aMessage sendTo: targets first].
targets size = 0 ifTrue: [
~self error: self class name,’ does not understand ', selector].
targets size > 1 ifTrue: [
"self error: 'More than one superclass responds to ', selector].

The instancevariablesuperclassinstancesolds a list of instances thie superclasses. These
instances can be created in the methdahlize of the dispatcher class.
MethodDispatcher>>initialize

superclassinstances := self class superClasses collect: [:each |
each new .

superClassess an accessor method toclass variablé&SuperClasseswhich holdsthe refer-
ences to the classes that act as superclasses. Since every class deritreddigpatcheclass
wants todefine it'sown superclasses in tiokass variabl&uperClassesSuperClassess a dic-
tionary with an entry for every subclass. The keys are the names of the subclasses.

In order toallow multiple inheritance omore then onévelthe methodespondsTohas also
to be overridden. This method hastést if theclass itself orone of its superclasses can re-
spond to a message with the given selector.
MethodDispatcher>>respondsTo: selector
(super respondsTo: selector) ifTrue: [Mrue].
"(superclassinstances

detect: [:each | each respondsTo: selector]
ifNone: [nil]) notNil.

To use the dispatcheflassfor mutiple inheritanceoneonly has to derive a subclass from the
dispatcher class and set the superclasses once.

SubClassl superClasses: (Array with: SuperClassl1 with: SuperClass?2)

The described simple implementation can't sallehe problems that arise with multiple in-
heritance. One problem is thatoife of the superclasses sendaessage to selthe method
dispatching starts at this superclass and not at the subclass as one would expect.

The technique used for method dispatchingetdize multiple inheritance &so usefufor the

implementation of a genengrapper class. Instead dispatching a message @oe of alist of

objects, the wrapper only has to forward the message to the wrapped object.
ObjectWrapper>>doesNotUnderstand: aMessage

self messagePreProcessing: aMessage.
NaMessage sendTo: content

One usage of thikind of wrapperclass isfor the pre-processing @very message sent to the
wrapped object. Fathis purpose, the wrappetass shoulshot bederived from clas©bject
so that every message is forwarded to the wrapped object.

Specificwrapperclasses can subcla§bjectWrapperand override the methashessagePre-
Processing: One possible application would be a message Tracer.

54 Method dispatch for multiple inheritance in Smalltalk

Tracer>>messagePreProcessing: aMessage
"Prints each message, the wrapped object receives, to Transcript."
| messageText |
messageText := self content printString, '>>',
aMessage selector asString, aMessage arguments printString.
Transcript cr; show: messageText.

The wrapperclass can provide a creation methodjectWrapper class>>forObjectwhich
after creation of a new instance sissinstance variableontentto the wrapped object. In the
case of the Tracer, the wrapped object could then be created together with the wrapper object:

Tracer forObject: ClassXYZ new.

Otherapplications of thisvrapperclass could béhe queuing of messagesofiling of classes
or various kinds of proxy classes, €a@. access protection docking of an object before ac-
cessing it. In IBM VisualAge, this technique is used in the implementation of part wrappers.

7 Conclusions

This chaptergives ashortsummary reflecting on at haseen achieved e framework so
far. It summarizes some ofir experiences with using Smalltalktimee nain respects. It then
points out the next steps to extend the framework.

7.1 Observations on Smalltalk

This section summarizes someanfr experiences of using Smalltatkmpared withour expe-
riences of using C++ anthie software developmeptvironment Sniff+The issuesre sepa-
rated into thesubsectiongl) language issueg?2) environment issues ar(@) system issues.
These experiencesre ourpersonal impressions. We dwt claim to be veryexperienced
Smalltalkprogrammers, so some of thgperienceseported aboubelow may not be appro-
priate for generalization.

7.1.1 Language issues

The following is a list of common themes leading to mistakes which we did and which we think
aretypically done by others asell (depending on the degree of a developexjserience with
Smalltalk). They are based on the lack of static typing wbiblrwise would have enabled the
compiler to catch the errors.

* Wrong return valuedt is easy tdorget the® tokenwhich corresponds toeturn in C++.
Since each method has ianplicit returnvalue thiscannot be indicated as arr@. The
most popular version of this mistake isfemget the” in the class methoddomeConcept
class>>newimplemented a&super new initialize

* Simple typing mistake#. is easy to make sipte typingmistakes whictcannot be indi-
cated as suckincethe error is dyping error. A common variant of this mistake is to for-
get thetrailing dot atthe end of a statemewhich may or mayot be caught atompile
time.

These mistakeare only discovered at runtime antirough testingThey could havebeen
caught easily in a typed system.

The ease of usintpe language and its purity in terms of objects, howeveavelisknown and
provided us with a clean model of using Smalltalk.

7.1.2 Environment issues

The IBM Smalltalk environment offers sevekalowsers, theomplexity of which is probably
overwhelmingfor most of theinexperienced Smalltaldevelopers. During development we

56

Observations on Smalltalk

switched to VisualAge whicprovided us with even more confusibgowsers. In thdollow-
ing, we list our impressions and include some early experiences with VisualAge as well.

Number of browsersThe number obrowsers ishigh. There aremany slightly differing
browserswhich allcan serve as spie clasrowser, but pop up idifferent settings and
have slightly differing menus. We duwot feel thatthe rationalebehindthe browsers and
their functionality is always intuitively clear.

The problem of text versus higher level abstractidmaditional compilersake arbitrary
text as an input. So do&snalltalk,but any change to a method is direcilycorporated
into the system and is presented according to the browsers logic.

— One cannotasily work with annotations as comments (sirtbere is no simple text
retrieval facility). Thus, traditional methods of organizing one/erk processes by
the help of annotations aren’t applicable.

— One has taccept the presentation of methods irafoghabeticallysorted vay. The
only way of further organizinghe methods is tput them into method categories.
This is sometimes insufficient, sinogethod categories are eithen coursegrained
or not appropriate.

— It is difficult to get anoverview of a class’s implementation, siraree has to browse
all the methods one by one. Vit that our perception of a system becammeich
more fragmentegince we had tget thedetails of a class in a more sequentialized
order.

Silent messages to the Transcripach newSmalltalkprogrammer learns vegoon that

he or she has to pay attention to the silent messages appeattegToanscript. It inly

there that it is indicated, faxample, that some methods of a class have been removed
because they cannot be execusatte theyare based on previously removed instance
variable.

Modality of editing method#\ll browsers arenodal withrespect tceediting a method. It
is notpossible tabrowse another method if the current methad been edited and is in
an inconsistenstate.Having edited anethod, one caonly leave thabrowser state by
either successfully compiling this method or by discartligchanges. To look at another
method, a new browser has to be opened.

VisualAge composition editowe have triedhe composition editor tbuild userinter-
faces by drag androp (GUI builcer) and think that istill needs further refinement. Some
example problems includéut are notimited to) receiving unmotivated messages from a
VisualAge part, problems with using German Umlauts adifficulties with composing
parts(changing gpart thathas beenncorporated into another part does not update that
other part - so much for aggregation and inheritance between parts).

Summarizing, we feel thalhe IBM Smalltalk or VisualAgérowsers need a phase of consoli-
dation and better integration. Programmetsch rely on textayout tologically and visually
structuretheir sourcecode, forexample class definitions, @rho use text as lasic means for
organizing their work processes with source code most likely will have to give up on this.

However, despite theesulting fragmentation afur perception thelegance of point-and-click
browsing through the system has been well apparent to us.

7.1.3 System issues

The only relevant system issue vemcountered is a problem wi8malltalk’s garbagecollec-
tion. When interfacing to Smalltalk externadsources like a windowystem itmay not be

Conclusions 57

possible to coherently integrate these into Smalltalk. In particuléMnSmalltalk window
system resources, for example widgets, have to be freed by hand and are not subject to garbage
collection.

This section has summarized someoof experiences with Smalltalk in general and I1BM
Smalltalk inparticular. At present, we cannsdy how difficult we think issues likamissing
static type checking will turn out to be. In general, however, we are confidendemeéxperi-
enced the system as powerful means for developing the framework.

7.2 Summary

We have presentetthe design of a Smalltalleramework for the Tools and Materials Meta-
phor. Thedesign was thoroughly based pnor experience with gimilar framework. Other-
wise it wouldnot have been possib(@or sensible) to develoghe frameworlwithin the given
time.

We enhancethe basic framework classesgt upclassegor tool constructionidentified some
aspectclasses and usexkample material classeBhe framework classdsr tools stemfrom

our experience. Based ayur previous experience we assume that they have already reached
maturity.

We introduced a tool for conceptually dealing with multiple inheritance. Essentially, this tool in
the tradition of the Tools and Materials Metaphor providepexific view on some of the
software developers’ materials, thatclasses and class interfaces, and specific ways of han-
dling theses materials based thre requirements for thiask ofdealing with multipleinheri-
tance. The Aspect Browser will certainly evolve.

This reporthas been written othe detailedevel of classnterfaces. We have therefore pre-
sented a detailed technical descriptiorthaf framework goindpeyondcurrent framework de-
scriptions which usually stopped at a more abstract level.

Due to its detailed description, the framework is open to be criticized. Howkigers just
what we arehoping for. Weare looking forward for such critique and hopegein new in-
sights from it which we can use then to enhance, refine and improve the framework.

7.3 Future work

The future of the framewotlies inthe hand of an industrigdrojectwhich will use it as dasis
for further development. The frameworklveertainly evolveHere we shortlylist which kind
of future enhancements could be considered:

* The change/updatmechanism might beeplaced by advanced techniques derling with
object dependencies, faxample techniques discussed iaglicit invocation [SN92,
NGGS93]. Eventsnight be made explicit asvent objects in a class interfacewthich cli-
entsmight link themselves. In case of eventst ageneral list ofobservers is notified but
only those clients which registered for a certain event.

» The Aspect Browser M continue to evolve. It has to deal with issues that arifieeirton-
text of large projects and team development,efcample if classeare notavailable in a
single imagebut stored in a repositor§gystem consistency and versioninit) wequire sev-
eral extensions so that it can be used as a real aid in system design.

58 Future work

» The environment W definitely evolve when external servicase connected to theystem.
This will mostlikely lead tothe introduction oimaterial providers and suppliers aither
concepts as presented in [Rie95a, RZ95].

This Tools and Materials Metaphor framework is finst Smalltalk framework of its kind. We
found that developing and working with it was fushowever,this is justthe beginning. The
next year will reveal further observations and findings for such an undertaking.

Bibliography

BCS92

BGZ95

Bis95

Boo94

ES90

FG92

GHJV95

GOP90

HO93

KGZ93

KM93

KP88

Mey92

Reinhard Bidde, Marie-Luise Christ-Neumann afdrl-Heinz Sylla.“Tools And
Materials: AnAnalysis and DesignMetaphor.” Tools-7,Conference Proceed-
ings Edited by Georg Heeg, Boridagnusson and Bertrand Meyer. Prentice-
Hall, 1992. 135-146.

Ute Burkle, Guido Gryczan and Heinz Zillighoven. “Object-Orienfttem
Development in a BankingProject: Methodology, Experiences, af@bnclu-
sions.”"Human Computer Interaction 1@&3 (1995): 293-336.

Walter R. Bischofberger. “Frameworkbasierte Softwareentwicklung.” OOP
Munchen '95Conference ProceedingSIGS Publications, 1995.

GradyBooch.Object-Oriented Analysis and Designth Applications.2nd Edi-
tion. Redwood City, California: Benjamin/Cummings, 1994.

MargaretEllis and BjarneStroustrup.The Annotated C++ Reference Manual
Reading, Massachusetts: Addison-Wesley, 1990.

Christiane Floyd an@uido Gryczan. “STEPS — a Methodological Framework
for Cooperative Software Development with Users.” EWHCI '@@&nference
Proceedings1992.

Erich Gamma, Richard Helm, Ralph Johnson and John Vlisdixksgn Pat-
terns: Elements of Reusable Desifgeading, Massachusetts: Addison-Wesley,
1995.

Keith E. Gorlen, Sanford M. Orlow and Perry S. PlexiRata Abstraction and
Object-Oriented Programming in C++dohn Wiley & Sons Ltd., 1990.

William Harrison and Harold Ossher. “Subject-Oriented Programming (A Cri-
tique of Pure Objects).” OOPSLA-980onference ProceedingSee alsoACM
SigPlan Notice28, 10 (October 1993): 411-428.

Klaus Kilberth, Guido Gryczan and HeinZillighoven Anwendungsorientierte
Softwareentwicklungv/ieweg, 1993.

SarahKuhn and Michael J. Muller:Participatory Design."Communications of
the ACM36, 4 (June 1993).

Glenn E. Krasner an&tephen T. Pope. “A Cookbook fda¥sing the Model-
View-Controller User Interface Paradigm in Smalltalk-80durnal of Object-
Oriented Programming., 3 (August/September 1988): 26-49.

Bertrand MeyerEiffel — The LanguageMcGraw/Hill, 1992.

NGGS93 David Notkin, David GarlanWillam G. Griswold andKevin Sullivan. “Adding

60

Bibliography

OH92

Rie93a

Rie93b

Rie95a

Rie95b

Rie95c

RSS95

RZ95

SN92

WG4

Implicit Invocation to Languages: Three Approaches.” ISOTAS-93, LNCS-742,
Conference Proceedingg&dited by ShojirdNishio and AkinoriYonezawa. New
York: Springer-Verlag, 1993. 489-510.

Harold Ossher anWVilliam Harrison. “Combination of Inheritance Hierarchies.”
OOPSLA-92,Conference ProceedingSee alsoACM SigPlan Notice27, 10
(October 1992): 25-40.

Dirk Riehle. Dokumentation zur IATMotif-BibliothekArbeitsbereich Soft-
waretechnik, Fachbereich Informatik, Universitat Hamburg, 1993.

Dirk Riehle.Dokumentation zur FIAK-BibliothelArbeitsbereichSoftwaretech-
nik, Fachbereich Informatik, Universitat Hamburg, 1993.

Dirk Riehle.Muster am Beispiel der Werkzeug und Material Metap{iasters
Thesis, in German). UBILAB Technic&eport 95.6.1Z0rich, Switzerland: Un-
ion Bank of Switzerland, 1995.

Dirk Riehle. “How andWhy to Encapsulate Clasgrees.” OOPSLA '95Confer-
ence Proceedingg o appear, 1995.

Dirk Riehle. “Patterns for EncapsulatinGlass Trees.” PLoP '95,Conference
ProceedingsTo appear, 1995.

Dirk Riehle, Bruno Schaffer and Martin Schnyder. “Design and Implementation
of a SmalltalkFramework for the Tools and Materials Metaphdnformatik/
Informatique(February 1996). To appear.

Dirk Riehleand Heinz Zillighoven. “APattern Language for Tool Construction
and Integration Based on the Tools and Materials MetapRattérn Languages

of Program DesignEdited byJames O. Coplien and Douglas C. Schmidt. Read-
ing, Massachusetts: Addison-Wesley, 1995. 9-42.

Kevin J. Sullivanand DavidNotkin. “Reconciling Environmentntegration and
Software Evolution.”ACM Transactions on Software Engineering and Method-
ology1, 3 (July 1992): 229-268.

André Weinand and Erich Gamm&T++ — a Portable, Homogeno@ass Li-
brary and Application FrameworkComputer Science Research at UBILAB
Edited by Walter R. Bischofberger and Hans-Peter Frei. Konstdnier-
sitdtsverlag Konstanz, 1994. 66-92.

