
1 

Value Object 
Dirk Riehle 

SAP Research, SAP Labs LLC 
3475 Deer Creek Rd, 94304 Palo Alto, CA, U.S.A. 

+1 650 215 3459 

dirk@riehle.org, www.riehle.org 
 

 

1  Intent 
Implement datatypes as immutable classes so that their instances 
can be handled similar to built-in values.  

2  Also Known As 
Whole Value. 

3  Motivation 
Consider a financial services application for handling deposits 
and withdrawals to and from accounts. You are dealing with 
monetary amounts like ‘$42’ or ‘€107’. Let’s assume you need to 
maintain the balance for some account. It is tempting then to rep-
resent the balance using a currency symbol and a BigDecimal for 
the monetary amount. 
public class Account { 
 protected char currency = '$'; 
 protected BigDecimal balance =BigDecimal.ZERO; 
 … 
} 
 
After a short consideration, you decide it is better to create a 
dedicated Money class to hold both the currency symbol and the 
monetary amount. The Money class will have methods for getting 
and setting the currency symbol, as well as methods for doing 
some arithmetic with the monetary amount, like adding or sub-
tracting money. 
public class Money { 
 public static final Money ZERO = new Money( 
  '$', BigDecimal.ZERO 
 ); 
 
 protected char currency = '$'; 
 protected BigDecimal amount =  
  BigDecimal.ZERO; 
 
 
 
 
 
 
 

 public Money( 
  char myCurrency, 
  BigDecimal myAmount 
 ) { 
  currency = myCurrency; 
  amount = myAmount; 
 } 
 
 public synchronized void add( 
  Money otherMoney 
 ) { 
  addAmount(otherMoney.getAmount()); 
 } 
 
 public synchronized void addAmount( 
  BigDecimal otherAmount 
 ) { 
  amount = amount.add(otherAmount); 
 } 
 
 … 
} 
 
An Account class then makes use of Money objects. 
public class Account { 
 protected Money balance = Money.ZERO; 
 … 
 
 public synchronized void deposit( 
  Money moreMoney 
 ) { 
  balance.add(moreMoney); 
 } 
 
 public synchronized void withdraw( 
  Money lessMoney 
 ) { 
  balance.subtract(lessMoney); 
 } 
 
 … 
} 
 
So far so good. You go ahead and use the Account and Money 
classes for implementing a money transfer method on a ‘financial 
application server’ class. (We are ignoring transaction and failure 
handling to keep it simple.) 
public class FinAppServer { 
 public static synchronized void transfer( 
  Money money, Account from, Account to 
 ) { 
  from.withdraw(money); 
  to.deposit(money); 
 } 
 … 
} 

 
Copyright is held by the author/owner(s). 
PLoP ’06, October 21-23, 2006, Portland, OR, U.S.A. 
ACM 978-1-60558-151-4/06/10 ...$ 5.00. 
 
Provided under the Creative Commons BY-SA license, see: 
http://creativecommons.org/licenses/by-sa/3.0/ 



2 

A simple unit test checks this implementation: 
public void testTransfer() { 
 Account from = new Account(); 
 Account to = new Account(); 
 
 from.deposit(new Money('$', 42)); 
 
 FinAppServer.transfer( 
  new Money('$', 3.14), from, to 
 ); 
 
 BigDecimal fromAmount = 
  from.getBalance().getAmount(); 
 
 assert( 
  fromAmount.doubleValue() == (42 - 3.14) 
 ); 
 
 BigDecimal toAmount = 
  to.getBalance().getAmount(); 
 assert(toAmount.doubleValue() == 3.14); 
} 
 
If you are like me, you’ll be surprised to learn that this test case 
fails. Both from and to accounts hold a ‘$42’ balance, which is 
wrong. (The from account should have an amount value of 42 – 
3.14 and the to account should have an amount value of 3.14.) 

You probably quickly figure out what’s going on: Both accounts 
started out with the ZERO Money object as its balance; the initial 
deposit of ‘$42’ to the from account also set the to account bal-
ance to ‘$42’, after all, it is the same Money object. The subse-
quent subtraction (in the withdraw method) and addition (in the 
deposit method) of ‘$3.14’ evened out the value change in the 
balance object. Since both accounts are holding the same object as 
their balance, both will display ‘$42’. 

This is the aliasing or side-effect problem. Here, it may appear 
trivial to avoid, but it easily gets more complicated: The side-
effects of changing an object that is referenced from another place 
are not always easy to comprehend. If we can avoid such nasty 
surprises, we will be well served. 

To quickly fix the bug, you change the balance initialization code 
of the Account class: 
protected Money balance = new Money('$', 0.0); 
 
The testTransfer test case works nicely now, and you decide to 
enhance the money transfer functionality. Specifically, you want 
a transfer to take place only if the account being withdrawn from 
does not fall below $0. So you rewrite the transfer method. 
public static synchronized void transfer( 
 Money money, Account from, Account to 
) { 
 Money fromBalance = from.getBalance(); 
 fromBalance.subtract(money); 
 if (fromBalance.isLowerThan(Money.ZERO)) { 
  throw new RuntimeException( 
   "Insufficient funds!" 
  ); 
 } 
 
 from.withdraw(money); 
 to.deposit(money); 
} 
 
This time we don’t have to write a test case to see that this won’t 
work. The subtraction in line 3 not only changes the local variable 

fromBalance but also the value of the underlying balance of the 
from account. If we were to run a transfer where the from account 
had enough money, it would find the transfer amount to be with-
drawn twice. Firstly, from the test to check whether the with-
drawal will not overdraw the account, and secondly, from the real 
withdraw method call. 

One possible solution is to make the Account object hand out only 
copies of its balance Money object. This way, no client could ever 
change the balance of an account without going through its regu-
lar methods. This also leads to a lot of copies if you check bal-
ances frequently. Many of these copies may never be changed and 
are likely to be discarded quickly. Basically, you are buying pro-
tection by copying eagerly without knowing whether you’ll ever 
need that protection. 

It is possible to pay the price of protection only when it is needed. 
For this, you need to make each Money object immutable, which 
means you make it return a new object every time where other-
wise it would change its state. Let’s look at the addAmount 
method to see what this means: 
public Money addAmount(BigDecimal otherAmount) { 
 BigDecimal newAmount =amount.add(otherAmount); 
 return new Money(currency, newAmount); 
} 
 
public Money subtractAmount( 
 BigDecimal otherAmount 
) { 
 BigDecimal newAmount = amount.subtract( 
  otherAmount 
 ); 
 return new Money(currency, newAmount); 
} 
 
Rather than changing its internal fields, a Money object returns a 
new Money instance that holds the desired values. This way, the 
original Money object doesn’t change. Read-only methods won’t 
require a new object. You only create a new object if a state 
change occurs.  

As a consequence, you have to change the way you program with 
Money objects. For example, the deposit method of the Account 
class now looks like this: 
public synchronized void deposit( 
 Money moreMoney 
) { 
 balance = balance.add(moreMoney); 
} 
 
Contrast this code with how it would have looked like if you had 
used a double instead of our Money class: 
public synchronized void deposit( 
 double moreMoney 
) { 
 balance = balance + moreMoney; 
} 
 
The code is structurally equivalent. Now that they are immutable, 
the code for dealing with Money objects looks like the code for 
dealing with built-in value types (data types). The Money class 
we have designed behaves like a value type. Its instances are 
called value objects, and the class itself is an application of the 
Value Object pattern. 



3 

4  Applicability 
Use the Value Object pattern if 

• the domain concept you are implementing represents a value 
type 

and if 

• the resulting class does not become too heavyweight as to 
slow down performance significantly. 

We say that we implement “value objects” using a “value object 
class” that represents a “value type” as derived from modeling 
your application domain. Value type means the same as data type, 
but is more specific.  

It would best if programming languages had language features 
that explicitly marked classes as value types, for example, by 
using the keyword “valuetype” rather than “class”. (This is finally 
in the making, see [9], [12].) 

The Value Object pattern is widely applicable. Value types are as 
fundamental as object classes, making the distinction between 
values and objects explicit. Examples of value types in the finan-
cial services domain are monetary amounts and currencies, in the 
Internet domain they are protocol names, domain names, and 
URLs, in math they are percentages, explicit fractions, and inte-
grals, and in engineering they are the metric system and its units. 

5  Structure 

 

6  Participants 
The Client class uses Value instances like built-in datatypes (to 
the extent that this is possible with your implementation lan-
guage). Whenever the Client wants to change the value of one of 
its attributes, it replaces the attribute object rather than changing it. 
You write code like attr = attr.calculate(); rather than 
attr.calculate(). 

The Value class represents a domain-specific value type. It is 
implemented such that Value instances are immutable objects, 
meaning that its instances cannot change their state. Rather, as the 
result of some computation, a new Value instance with the desired 
internal state is returned. 

7  Collaborations 

A client creates new Value instances. Necessary data for initiali-
zation is provided as part of the constructor call or through a spe-
cial initialization protocol. No state-changing methods should be 
published to clients and be used by them, even if these methods 
are public. 

A Value instance provides information to a client through read-
only query methods (a.k.a. observer methods). For what would 
traditionally be state-changing methods, the value object creates a 
new instance of its class and initializes it with the data that repre-
sent the result of the computation the current method is supposed 
to carry out. 

A client that calls a command method of a value object receives a 
new Value instance back; it typically drops the old value object 
and keeps computing with the new value. Most notably, if the 
value is stored in an attribute of the client, the client replaces the 
value object representing the attribute’s value with the new value 
object. 

8  Consequences 
The Value Object pattern provides the following general benefits: 

• Better domain modeling and understanding. Recognizing a 
domain concept as a value type and implementing it as such 
reduces the gap between the domain model and its imple-
mentation. This eases code comprehension. 

• Safer programs. Implementing value objects with immutable 
classes eliminates a whole class of bugs that comes from 
unwanted side-effects. Thus, your programs get safer. 

• Potentially better performance. Value objects can improve 
system performance, because value objects are copied only if 
they are about to be changed. No superfluous copying hap-
pens. 

There are more specific advantages, depending on where and how 
you use value objects. 

• Concurrency. Because you can’t change a value object’s 
state, you don’t have to synchronize methods or lock the ob-
ject in other ways. Hence, you improve performance. 

• Persistence. Value objects don’t have to maintain an object 
id, hence you can directly write them to a relational database 
table without having to maintain them in separate tables with 
primary ids. 

• Serialization. Similar to persistence, you can simply dump a 
value object as data into a data stream and you don’t have to 
worry about dangling references from other parts of the ob-
ject graph being serialized. 

• Distribution. Also, as you copy regular objects across proc-
ess boundaries, you always copy enclosed value objects too--
-you never pass on references to value objects across process 
boundaries. 

• Memory consumption and garbage collection. By sharing 
value objects (see below for a discussion), you can poten-



4 

tially safe a lot of memory and ease the burden on the gar-
bage collector (like in the Flyweight pattern). 

There are also some disadvantages. 

• More complicated code. Value object classes require a little 
more code upfront than regular object classes. So clients 
need to understand that they are dealing with value objects, 
and need to look at how they are handled before using them. 

• Changes in coding style. Programming with value objects 
may feel strange at first if you are not used to it. Effectively, 
you never change the state of a value object but rather assign 
a new value object to a client’s attribute, whenever you made 
a computation with that attribute.  

• Potentially lower performance. Unqualified use of value 
objects may reduce system performance. In particular 
heavyweight value objects that go through computations 
where a lot of these objects are created and dropped quickly 
may drag down performance. 

In a given system, if it would distinguish value types from regular 
classes cleanly, the majority of domain concepts would be value 
types rather than object classes. 

9  Implementation 
A Value Object class is implemented like a regular immutable 
class. Query methods (getters, boolean query methods, etc.) sim-
ply return the requested state information. Command methods 
(setters, etc.) carry out the requested computation using method-
local fields. They return a new instance of the Value Object class 
that gets initialized with the results of the computation taken from 
the method-local fields. 

There are a variety of implementation issues to be considered. 

• Immutability. Making an object immutable means that there 
are no state changing operations published to clients. You 
can make your life substantially easier (and your programs 
safer) if you can mark the fields of a value object class as fi-
nal. This way, the compiler can catch any attempts to change 
a value object’s state after initialization has taken place. It 
also makes your immutable classes thread-safe. 

• Identity, equality, and hash codes. Values don’t have identity, 
so it is important to properly implement anything that has to 
do with equality. In Java, this means to implement the 
equals() and hashcode() methods. Two value objects that are 
distinct objects may still mean the same value, and equality 
checking needs to realize this. In contrast to this, two regular 
objects that are distinct are never equal (otherwise they 
would be values). 

• Dropping synchronization. With value objects, you can drop 
all synchronization code from your Value implementation. 
Please note that this does not hold true if you are sharing 
value objects to make sure that there is only one instance, see 
the discussion on value object sharing below. 

• Separating concerns with the Body/Handle idiom. In some 
languages, it is easy to separate the copying of the value 
from a method’s computation. In particular, in C++, using 
the Body/Handle idiom [3], you can use a copy-on-write pol-

icy to create a copy on the fly so the Value’s body imple-
mentation itself does not have to worry about making the 
copy. Rather the handle object does it for its body. This 
makes implementation easier. 

• Mapping values to database tables. For persistence, you can 
(and usually should) map complex values to one or more 
columns of an enclosing table. For example, the ACCOUNT 
table in an RDBMS should have both a BAL-
ANCE_CURRENCY column and a BALANCE_AMOUNT 
column to hold an account’s balance. As you can see from 
the prefix BALANCE, we are mapping the balance attribute 
to two technically separate but conceptually related columns. 

• Dealing with heavyweight value types. For heavyweight 
value objects, you sometimes give up on immutability. The 
problem here is that depending on how they are used, a lot of 
heavyweight value objects may be created only to be 
dropped quickly, because they are only an intermediate 
computation result. Such programming may put a significant 
burden on the garbage collector and downgrade performance 
in general. In such cases, it may be best to let the client han-
dle the copying. This puts the burden of watching over pos-
sibly unwanted side-effects on the client. In spirit, this is still 
a value type, even though it may look like just a regular class. 

• Higher-order value types. Some value types are best viewed 
as instantiations of value type constructors. A value type 
constructor is a value type that needs to be configured to give 
you a concrete value type. Traditional examples are ranges 
as in Pascal or Modula-2 (and many other programming lan-
guages). To get a datatype that accepts only integers in the 
range of 1..12 you write this: INTEGER MONTHS= INTE-
GER([1..12]); Another example are subsets. Unfortunately, 
Java supports neither range nor subset definitions. 

• Language support. Structured or object-oriented program-
ming languages typically don’t support first-class value types. 
However, some well-known concepts can be used for value 
types. In Java 5, for example, you can use enums now to 
have an easily recognizable value type of finite cardinality. 
You still have to make sure your enum class is immutable, 
for example, by making its fields final---the compiler doesn’t 
help you ensure it. 

An important strategy for improving Value Object performance is 
sharing value objects (Value instances). Sharing value objects 
means making sure only one instance (or a defined pool) of any 
given value exists in the system. If you manage to efficiently 
share value objects, you can get a variety of performance benefits, 
for example, checking for object equality can be reduced to 
checking for object identity. Also, memory consumption and 
garbage collection can be reduced significantly. 

• Using Factory and Flyweight. For sharing, you typically 
have a factory create and track the Value instances, much 
like an Abstract Factory creates objects, and much like a 
Flyweight tracks its instances [7]. It is common to hide the 
Value constructors and require clients to go through factory 
methods for new objects. 

• Retrieving vs. creating. Retrieving a shared object is typi-
cally more expensive than creating a new object. This is be-
cause you usually need to initialize an empty value object 



5 

with the data used to retrieve the shared instance to create a 
hash code. In some circumstances, if the hash code is trivial, 
this may not be a problem. 

• Reintroducing synchronization. Sharing makes your life 
more complicated though. It reintroduces synchronization, 
because you can’t have two Value instances denoting the 
same value in the system. Hence, in the retrieval process for 
the shared value object you need to synchronize if you are 
about to create a new Value instance because none existed 
yet for the requested value. So you take a speed penalty. 

• Distinguishing by value type cardinality. Sharing makes 
most sense if the value type’s cardinality (possible number of 
Value instances) is finite. Currency has a finite cardinality, 
Money has not. As a consequence, at some point of time, 
you have created all the Currency objects and can rest as-
sured that this is the upper limit for memory consumption. 
With Money objects, of which there may be any number, 
you don’t know this. 

• Improving performance through eager initialization. If you 
know that your application makes extensive use of a specific 
finite-cardinality value type, then it makes sense create all 
instances when the system starts up; otherwise you should 
initialize them on-demand. A hybrid strategy, employed by 
the JDK’s BigInteger class is to create a frequently used sub-
set during system startup and to create further instances on-
demand. 

10  Sample Code 
Money and Currency are value types that you can implement as 
classes or enums. A simple straightforward implementation of 
Currency in Java 5 might utilize enums and look like this: 
public enum Currency { 
 USD("USD", '$', 2), 
 EUR("EUR", '€', 2), 
 JPY("JPY", '¥', 0); 
  
 protected final String isoCode; 
 protected final char symbol; 
 protected final int noFractionDigits; 
  
 private Currency(String myISOCode, 
  char mySymbol, int myNoFractionDigits 
 ) { 
  isoCode = myISOCode; 
  symbol = mySymbol; 
  noFractionDigits = myNoFractionDigits; 
 } 
 
 … 
} 
 
Enums are a good tool to implement value types of known cardi-
nality. If you know exactly what values there are and you can 
enumerate those, enums are your friends. Enums aren’t automati-
cally made immutable, so you still need to implement them prop-
erly. Please note that we achieved immutability by making all 
fields final. 

If you don’t know the exact number of your possible values, or if 
this number is simply too large to be enumerated easily, it is bet-
ter to use a regular class. This is what the JDK does for currencies 

with the java.util.Currency class, which represents all 200+ ISO 
currencies there presently are. 
package java.util; 
… 
 
public final class Currency  
 implements Serializable { 
 
 private final String currencyCode; 
 transient private final int 
  defaultFractionDigits; 
 … 
 
 private static HashMap instances =  
  new HashMap(7); 
 … 
 
 private Currency(String currencyCode, 
  int defaultFractionDigits 
 ) { 
  this.currencyCode = currencyCode; 
  this.defaultFractionDigits = 
   defaultFractionDigits; 
 } 
 
 public static Currency getInstance( 
  String currencyCode 
 ) { 
  return getInstance( 
   currencyCode, Integer.MIN_VALUE 
  ); 
 } 
  
 private static Currency getInstance( 
  String currencyCode, 
  int defaultFractionDigits 
 ) { 
  synchronized (instances) { 
  … 
 } 
  
 public String getCurrencyCode() { 
  return currencyCode; 
 } 
 
 … 
} 
 
A couple of things are interesting about java.util.Currency. First, 
it is a true Value Object class, that is, it is immutable and it its 
instances are used like values. 

Secondly, it shares its instances: There can never be two Currency 
instances that both represent the US$. This sharing is realized by 
making the constructor private and forcing clients to use the static 
getInstance() method. A consequence of there never being dupli-
cate Currency objects is that the Currency class does not have to 
implement equals() and hashcode(); the default implementations 
inherited from Object are sufficient. 

Sharing is implemented in a straightforward way: Existing in-
stances are maintained in a hash map. If an instance does not yet 
exist, it is created on the fly. This leads to an interesting trade-off 
that may or may not work for some clients. Within the getIn-
stance() method, the code synchronizes on the instances hash map, 
incurring locking overhead. This is to avoid the problems with the 
double-checked locking pattern in Java [1]. The only way to 
avoid this performance penalty is to fully create all currencies 
upon system initialization, which has the downside of creating 
objects that most applications may never use. 



6 

Hidden in the Currency class code is the use of 
java.util.CurrencyData, which provides the initialization data for a 
new Currency value object. It is contains ISO 4217 currency code 
data. Unfortunately, there is no way of configuring this data so 
that your own reference data could be injected. For example, if 
you have your own symbols for precious metals, as many banks 
do, you may not be able to transparently use them as currencies. 
Also, java.util.Currency does not provide all information you may 
need. For example, minor units that belong to a currency (like 
‘cent’ for the Dollar or Euro) are missing. So you may end up 
having to write your own currency class after all. 

11  Known Uses 
The distinction between objects and values in structured and ob-
ject-oriented programming was first spelled out in the seminal 
article by MacLennan [10]. It has taken a while, but with the new 
breed of object-oriented programming languages like X10 [9] and 
Fortress [12], first-class value types seem to finally have arrived. 

The most widely known uses of the Value Object pattern can 
probably be found in the Java JDK implementations. The String, 
Integer, and Float classes are close-to-the-system Value Object 
implementations. Further and somewhat cleaner examples are the 
BigInteger and BigDecimal classes, which are in fact imple-
mented as immutable classes, with some caching for common 
numbers (e.g. values between -10 and +10). The JValue Value 
Object framework provides more examples: Hierarchical names, 
URLs, monetary amounts, UML datatypes, and others [11]. 

As a pattern, Value Object has first been described by Cunning-
ham [4] and later by Fowler [6] and Evans [5]. We provide a 
lengthy discussion of Value Object design and implementation 
considerations in traditional programming languages in ([BRSe-
tal98]). 

12  Further Development 
This paper is being developed on the web in a wiki at 
http://wiki.moredesignpatterns.com. You can find the latest revi-
sion there and comment on it. Any such comments are highly 
appreciated! Make sure you send me email too in order to get 
properly acknowledged. 

ACKNOWLEDGEMENTS 
I would like to thank Doug Lea, the PLoP 2006 shepherd of this 
paper, as well as the writer’s workshop at PLoP 2006, consisting 
of Pau Arumi, Djamal Bellebia, Paddy Fagan, David Garcia, 
Ralph Johnson, Hesham Saadawi, Leon Welicki and Jason Yip. 

REFERENCES 
[1] David Bacon et al. “The ‘Double-Checked Locking is Bro-

ken’ Declaration.” Available from http://www.cs.umd. 
edu/~pugh/java/memoryModel/DoubleCheckedLocking.html 

[2] Dirk Bäumer et al. Values in Object Systems. Ubilab Tech-
nical Report 98.10.1. UBS AG, 1998. Available from 
http://www.riehle.org/computer-science/research/1998/ ubi-
lab-tr-1998-10-1.html 

[3] James O. Coplien. Advanced C++ Programming Styles and 
Idioms. Addison-Wesley, 1992. 

[4] Ward Cunningham. “The Checks Pattern Language of In-
formation Integrity.” In Pattern Languages of Program De-
sign. Addison-Wesley, 1996. 

[5] Eric Evans. Domain-Driven Design. Addison-Wesley Long-
man, 2004. 

[6] Martin Fowler. Patterns of Enterprise Application Architec-
ture. Addison-Wesley, 2002. 

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object Ori-
ented Design. Addison-Wesley, 1995. 

[8] James Gosling et al. The Java Language Specification. Addi-
son-Wesley, 2005. 

[9] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, 
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, 
Christoph von Praun, and Vivek Sarkar. “X10: An Object-
Oriented Approach to Non-Uniform Cluster Computing.” In 
Proceedings of the 2005 Conference on Object-Oriented 
Programming, Systems, Languages, and Applications (OOP-
SLA 2005). ACM Press, Page 519-538. 

[10] B. J. MacLennan. “Values and Objects in Programming 
Languages.” ACM SIGPLAN Notices 17, 12 (December 
1982). Page 70-79. 

[11] Dirk Riehle. The JValue Value Object Framework. 1999. 
Available from http://www.jvalue.org 

[12] Eric Allen, David Chase, Victor Luchangco, Jan-Willem 
Maessen, Sukyoung Ryu, Guy L. Steele Jr, Sam Tobin-
Hochstadt. The Fortress Language Specification Version 
0.903. Available from http://research.sun.com. 

 

 


